

Bachelor Thesis

Software-Defined Radio with GNU Radio

and USRP/2 Hardware Frontend:

Setup and FM/GSM Applications

Matthias Fähnle

Advisor: Prof. Dr.-Ing. Frowin Derr

Hochschule Ulm

University of Applied Sciences

Institute of Communication Technology

Ulm, Germany

Winter term 2009/2010

Software-Defined Radio with GNU Radio and USRP/2

 - 1 -

Hereby I declare that I have written the enclosed bachelor thesis entirely on my own and

have not used other than the referenced sources. Any concepts or quotations applicable to

these sources are clearly attributed to them.

This bachelor thesis has not been submitted in the same or substantially similar version, not

even in part, to any other authority for grading and has not been published elsewhere.

Ulm, 29.01.2010

Matthias Fähnle

Software-Defined Radio with GNU Radio and USRP/2

 - 2 -

Abstract

Recent progress in digital communication system design rests mainly upon software

algorithms instead of dedicated hardware. In a typical communication system, as in Figure 1,

not only source, line and channel coding, encryption and multiplexing are digitally

implemented. Based on FPGA's and DSP's, pulse shaping and modulation is also done by

digital signal processing. For instance OFDM, the preferred modulation scheme for the

future LTE mobile system, cannot be thought of without digital implementation.

Figure 1: Block diagram of a typical digital communication system [1]

All efforts to push digital implementation towards the antenna (wireless) or the cable (wire

based) can be summarized in SDR, Software Defined Radio. Together with high-speed A/D-

and D/A-converters and a more or less universal RF frontend, various transmission formats

(e.g. Bluetooth, WLAN, DECT, ZigBee) may be provided on the same hardware. The only

thing to change is the software, which implements the protocol stack and the physical layer

functions.

Software-Defined Radio with GNU Radio and USRP/2

 - 3 -

In roughly three chapters, the bachelor thesis covers Software Defined Radio based on the

Open Source project GNU Radio and the Universal Software Radio Peripheral (USRP and

USRP2). It starts with installation and configuration aspects of GNU Radio and its graphical

interface GNU Radio Companion (GRC), offers some background knowledge of how GNU

Radio works in conjunction with USRP and addresses an Audio-specific clock synchronization

issue. In the following chapter some GNU Radio projects like a FM RDS receiver, a capture

utility for the GNU Radio-USRP connection and a simple transmit samples generator are

presented.

The last part treats an open GSM system based on OpenBTS and a hardware setup.

Installation and operation details of OpenBTS and Asterisk as SIP-server, S-parameter

measurements of the RF setup, some solved porting issues (USRP2 in place of USRP) and a

preliminary implementation of an automatic SIP registration utility are given. Installation

guides and scripts can be found in the annex.

To sum up, all documented projects have been run successfully. GNU Radio together with

USRP/2 hardware proved to be a valuable lab platform for implementing complex radio

system prototypes in a short time.

Ulm/Germany, February 2010

Matthias Fähnle (matthias@faehnle.org)

Frowin Derr (derr@hs-ulm.de)

Software-Defined Radio with GNU Radio and USRP/2

 - 4 -

Table of contents

1. Introduction ... 7

1.1. Task and target of this thesis ... 7

1.2. Abbreviations used in conjunction with SDR (GNU Radio, GRC, USRP/2)............................... 7

2. SDR platform and basics ... 8

2.1. SDR block diagram ... 8

2.2. Universal Software Radio Peripheral (USRP) version 1 and 2 ... 10

2.3. USRP/2 daughterboards .. 12

2.4. SDR environment and system setup ... 13

2.5. GNU Radio ... 14

2.6. GNU Radio Companion (GRC) ... 15

2.7. “Getting started”-problems .. 25

3. Adapted GNU Radio Projects .. 30

3.1. RDS FM receiver .. 30

3.2. Capture samples from USRP2 in C++ ... 32

3.3. Wireshark trace ... 37

3.4. Sending Samples .. 39

4. OpenBTS .. 46

4.1. Block diagram – traditional GSM in short ... 46

4.2. Laboratory setup ... 49

4.3. S-parameters of circulator and directional coupler .. 51

4.4. Components of OpenBTS .. 54

4.5. Asterisk .. 56

4.6. Automated SIP user registration ... 58

4.7. SWLOOPBACK .. 60

4.8. Porting issues USRP/2 ... 61

4.9. OpenBTS I & Q data ... 63

5. Conclusion ... 67

6. Annex .. A

6.1. Annex A: Installation guide for Fedora 9 with GNU Radio 3.2.2 and USRP2 A

6.2. Annex B: Automated installation script for GNU Radio 3.2.2, USRP2, ALSA and RDS on

 Fedora 9... H

6.3. Annex C: Install.sh ... K

6.4. Annex D: RDS receiver for USRP2 .. N

6.5. Annex E: 3-port s-parameter measurement of laboratory setup ..S

6.6. Annex F: Sending samples source code with byte orders and csv generation T

Software-Defined Radio with GNU Radio and USRP/2

 - 5 -

List of abbreviations

3GPP 3rd Generation Partnership Project

ADC Analog-to-digital converter

ALSA Advanced Linux Sound Architecture

API Application Programming Interface

ARFCN Absolute Radio Frequency Channel Number

AuC Authentication Center

BMC Biphase mark code

BS Base Station

BSC Base Station Controller

BSS Base Station Subsystem (BTS + BSC)

BTS Base Transceiver Station

CF Center frequency

CGRAN Comprehensive GNU Radio Archive Network

CLI Command line interface

CSV Comma-separated values

DAC Digital-to-analog converter

DC Direct current

DDC Digital down converter

Downlink Signal sent from BS MS

DUC Digital up converter

DUT Device under test

FM Frequency Modulation

FM Frequency Modulation

FPGA Field-programmable gate array

GbitE Gigabit Ethernet

(G)MSC (Gateway) Mobile Switching Center

GNU GNU's Not Unix

GRC GNU Radio Companion

GSM Global System for Mobile Communications

GUI Graphical User Interface

HLR Home Location Register

I/Q Inphase & Quadrature

IF Intermediate Frequency

IMSI International Mobile Subsriber Identity

IP Internet Protocol

LO Local Oscillator

LTE Long Term Evolution

MS Mobile station

NCO Numerically-controlled oscillator

PBX Private branch exchange

PCB Printed Circuit Board

PPM Parts per million

PLL Phase-locked loop

Software-Defined Radio with GNU Radio and USRP/2

 - 6 -

PSTN Public switched telepfone network

RDS Radio Data System

RF Radio Frequency

Rx Receive path

S/PDIF Sony/Philips Digital Interconnect Format

SDR Software-Defined Radio

SIM Subscriber Identity Module

SIP Session initiation protocol

SMA SubMiniature version A (coaxial RF connector)

STDOUT Standard output (where a application writes ist output data to)

SWIG Simplified Wrapper and Interface Generator

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TMSI Temporary Mobile Subsriber Identity

TTL Transistor-transistor logic

Tx Transmit path

UDP User Datagram Protocol

UE User Equipment

Um GSM air interface

Uplink Signal sent from MS BS

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VCC Common-collector voltage (IC power supply pin)

VLR Visitor Location Register

VoIP Voice over IP

XML Extensible Markup Language

Used paths

$GNURADIOROOT = /gnuradio-3.2.2

$PYTHONPATH = /usr/local/lib/python2.5/site-packages

$OPENBTSROOT =/openbts-2.5Lacassine

Software-Defined Radio with GNU Radio and USRP/2

 - 7 -

1. Introduction

1.1. Task and target of this thesis

This work provides an insight into the wide area of Software-Defined Radio. Starting with

installation of a Linux system including an automated installer for GNU Radio framework on

Fedora 9, an introduction to SDR techniques and the used hardware frontends are given.

Furthermore, a software GSM BTS is set up using the OpenBTS project. Covering basics in

GSM and S-parameter measurements, a laboratory setup for GSM communication is built.

For a more detailed insight into the structure of GNU Radio and OpenBTS, code extensions in

C++ as well as some GRC project adaptations are additionally provided.

1.2. Abbreviations used in conjunction with SDR (GNU Radio, GRC, USRP/2)

Since this document deals with many abbreviations, a one-sentence-introduction of some

fundamental terms might be useful at the beginning. Later on, all of them are explained in

detail. However, some fundamentals in communications engineering and computer science

will be necessary for comprehension of this work.

Abbreviation In chapter Short description

SDR 2.1 Software-Defined Radio describes the technique of using a universal

hardware frontend to receive and transmit RF signals with waveforms

defined in software applications

USRP/2 2.2, 2.3 USRP and USRP2 Universal Software Radio Peripheral are the two used

hardware frontends, which build the interface between an host PC and

the RF domain by mixing the transmitted and received signals to an

software definable IF

GNU Radio 2.5 GNU Radio is a an open source software development framework, that

builds the interface to the RF hardware USRP/2

GRC 2.6 GNU Radio Companion is an application distributed with GNU Radio, in

which software radios can be built within a flow graph using numerous

predefined blocks for signal sources, sinks and modulations

OpenBTS 4 Open source project which implements a GSM base station using USRP

Software-Defined Radio with GNU Radio and USRP/2

 - 8 -

2. SDR platform and basics

Starting with a significant citation from GNU Radio founder Eric Blossom, Software-Defined

Radio can be defined as:

„Software radio is the technique of getting code as close to the antenna as possible. It turns

radio hardware problems into software problems.“ [2]

In principle, a universal applicable hardware serves as interface between the baseband and

the RF. The waveform of a transmitted signal is fully generated through software, as well as

a received signal is fully processed and demodulated within software algorithms. In SDR, the

processing power required for signal processing is sourced out to a universal host (PC).

An important benefit for industrial usage is the possibility to change complete processing

stacks or modulation schemes just with a software update. This also saves costs and time for

new hardware developments.

2.1. SDR block diagram

A universal SDR structure with the specific software (GNU Radio) and hardware (USRP/2) is

given in Figure 2.

Figure 2: Software-Defined Radio block diagram

Software-Defined Radio with GNU Radio and USRP/2

 - 9 -

In Figure 2, the Software-Defined Radio (SDR) structure is divided into three blocks. The left

one builds the RF frontend of the hardware which serves as interface to the analog RF

domain. In the second block, the intelligence of the hardware part is implemented, forming

the interface between the digital and the analog world. In the third block, the whole signal

processing is done - fully designed in software.

Getting more detailed, the interface to the analog world is given as mentioned on left side of

Figure 2. An analog RF signal can be received or transmitted over antennas, or can also be

directly connected via SMA connectors to the SMA ports of RF frontend called

daughterboards. The upper path (arrow towards the daughterboard) marks the receive path

(Rx), the lower path describes the transmit path (Tx). Both paths can operate autonomously.

The possible operation frequency range is very modular (from DC to 5.9 GHz), depending on

the available daughterboards for USRP/2. Daughterboards form the RF frontend of USRP/2

and are connected to the USRP/2 motherboard. On USRP/2 motherboard, the analog signals

are converted to digital samples and mixed down to baseband within the FPGA. Also a

decimation of the sample rate is performed, see chapter 2.2.

Regarding Figure 2, data sampled by the FPGA are sent to the host by USB or Gigabit

Ethernet respectively what is used – USRP or URSP2. Connected to the host computer (right

block in Figure 2), the GNU Radio framework controls the further signal processing

capabilities. GNU Radio is an open source framework, providing various pre-assembled

signal processing blocks for waveform creation and analysis in software radio development.

Further information about signal processing and the GNU Radio environment are elaborated

in chapter 2.5.

In the GNU Radio environment, Python and C++ are used as main programming languages as

well as a signal flow application called GNU Radio Companion (GRC).

Very detailed documentation about USRP and daughterboards with information gathered

from mailing lists can be found at:

http://www.gnuradio.org/redmine/attachments/129/USRP_Documentation.pdf

Software-Defined Radio with GNU Radio and USRP/2

 - 10 -

2.2. Universal Software Radio Peripheral (USRP) version 1 and 2

Figure 3: USRP

Figure 4: USRP2

As explained in chapter 2.1, the USRP serves as interface between digital (host) and analog

(RF) domain. In May 2009, the well-proven Universal Software Radio Peripheral (USRP)

product became extended by an enhanced product named USRP2. USRP2 uses a different

FPGA, faster ADCs and DACs with a higher dynamic range and a Gbit-Ethernet connection. All

USRP daughterboards can be used furthermore.

USRP USRP2

Manufacturer Ettus Research

ADCs 64 MS/s 12-bit 100 MS/s 14-bit

DACs 128 MS/s 14-bit 400 MS/s 16-bit

Mixer programmable decimation- and interpolation factors

Max. BW 16 MHz 50 MHz

PC connection USB 2.0 (32 MB/s half duplex) Gigabit Ethernet (1000 MBit/s)

RF range DC – 5.9 GHz, defined trough RF daughterboards

Table 1: USRP versus USRP2

In USRP2 motherboard, an analog to digital converter (ADC)

samples the received signal and converts it to digital values

depending on the ADCs dynamic range of 14 bit.

How many times per second the analog signal can be measured is

defined by the sampling rate of used ADCs - yielding in 100e6

results per second at a sampling rate of 100 mega samples per

second (MS/s) for USRP2.

The digital sample values are transferred to the FPGA and
Figure 5: USRP/2 SDR Block

Software-Defined Radio with GNU Radio and USRP/2

 - 11 -

processed with digital down converters (DDC) to meet exactly the requested output

frequency and sample rate. Below, the schematic of a DDC is shown.

Figure 6: Digital Down Converter Block Diagram (according to [2])

The digitized samples from ADC are mixed down to the desired IF by being multiplied with a

sine respectively cosine function resulting in the I and Q path. The frequency is generated

with a numerically-controlled oscillator (NCO) which synthesizes a discrete-time, discrete-

amplitude waveform within the FPGA. Via the used NCO, very rapid frequency hopping is

feasible.

Afterwards a decimation of the sampling rate is performed by an arbitrary decimation factor

N. The sampling rate (fs) divided by N results in the output sample rate, sent to host. In

transmit path, the same procedure is done vice versa using digital up converters (DUC) and

digital analog converters (DAC).

The FPGA also supports time dependent applications which e.g. use TDMA. A free running

internal counter allows incoming samples to be sent in strictly definable timestamps.

Towards host side, USRP2 uses the Gbit-Ethernet connection, allowing a significant higher

throughput than USRP with USB 2.0 achieves. The USB connection sustains 32 MB/s in half

duplex, so transmission and reception of samples isn’t possible synchronously. Using 4 byte

complex samples (16-bit I and 16-bit Q) and respecting the Nyquist criterion leads to a

usable (complex) spectral bandwidth of 8 MHz. For Gbit-Ethernet in USRP2, the theoretically

Software-Defined Radio with GNU Radio and USRP/2

 - 12 -

data rate of 125 MB/s allows for a theoretical (complex) RF bandwidth of about 31,25 MHz.

A value of 25 MHz usable bandwidth, as given in [3], may serve as a realistic limit.

2.3. USRP/2 daughterboards

On most daughterboards, the signal is already filtered, amplified and tuned to a baseband

frequency dependent on the boards IF bandwidth and local oscillator frequency. There are

also so called Basic Rx/Tx boards with no frequency conversion or filtering. They only provide

a direct RF connection to the motherboard.

Identifier Frequency range Area of application

Transceiver

RFX900 750 to 1050 MHz GSM (Low Band)

RFX1200 1150 to 1450 MHz GPS

RFX1800 1,5 to 2,1 GHz DECT, GSM (High Band)

RFX2400 2,3 to 2,9 GHz WLAN, Bluetooth

XCVR 2450 2,4 - 2,5 and 4,9 - 5,9 GHz WLAN

Transmitter, Receiver

Basic TX, Basic RX 1 to 250 MHz Misc baseband operations

TVRX Receiver 50 to 860 MHz VHF, DAB

Table 2: Frequency range of several USRP/2 daughterboards

Figure 7: RXF900

Figure 8: TVRX

Software-Defined Radio with GNU Radio and USRP/2

 - 13 -

2.4. SDR environment and system setup

During the task, the laboratory setup was built using the following equipment.

Host characteristics

Processor Intel Pentium 2.8 GHz (Dual Core), 512 MB RAM

OS Fedora 9

GNU Radio 3.2.2

OpenBTS 2.5Lacassine

SDR equipment

SDR RF hardware USRP, USRP2

USRP Daughterboards TVRX, 2xRFX900, 2xRFX1800, Basic Rx/Tx, XCVR2450

Signal generator and measurement equipment

Network analyzers
Rohde & Schwarz ZVA 8 Vector Network Analyzer (300 kHz – 8 GHz)

Rohde & Schwarz ZVM Vector Network Analyzer (10 MHz - 20 GHz)

Oscilloscope Tektronix TDS460A (400MHz, 100MS/s)

Signal generators
Marconi Instruments signal generator 2022C (10kHz - 1GHz)

TTi TG330 Function generator

Spectrum analyzer Rohde & Schwarz FSL (9kHz - 6GHz)

Mobile equipment

DC Power Supply Agilent E3631A

GSM mobile Nokia 5330 XpressMusic

RF equipment

Attenuators
Huber & Suhner 20 dB attenuators

Rohde & Schwarz RF step attenuator 139dB

Circulator Renaissance 3A5BC

Directional coupler Hewlett Packard 776D (940 – 1900 MHz)

Screened case MTS MSB-0011-USB (418x268x116)

Software-Defined Radio with GNU Radio and USRP/2

 - 14 -

To allow an easy host system setup, an installation guide for GNU Radio 3.2.2 on Fedora 9 is

provided in Annex A of this document. After having installed Fedora 9, an install script may

be run, which unpacks the provided files and afterwards installs automatically what’s

needed for an easy entry to a SDR platform. Further configuration statements can be

inserted in install.sh.

In Annex C the full script is attached. Annex B provides additional comments for all

statements to give a better understanding what’s done. Note: It is not necessary to

understand bash script programming like it is done here for use of GNU Radio. The

comments will give just a short excursion to bash-scripting. Being anyway interested in bash-

programming, the “Advanced Bash-Scripting Guide” on

http://tldp.org/LDP/abs/html

or similar sources may be useful.

2.5. GNU Radio

The GNU Radio project was founded by Eric Blossom with the intention of creating an open

source framework for software radios. Providing the application programming interface (API)

for USRP/2, GNU Radio represents the centre of SDR development with USRP/2 frontend.

In GNU Radio, various pre-assembled signal processing blocks for waveform creation and

analysis are implemented.

For 3rd party open source projects based on GNU Radio, George Nychis founded the

Comprehensive GNU Radio Architecture Network (CGRAN). The RDS receiver of chapter 3.1

can be found there.

GNU Radio runs under several operating systems like Linux, Mac OS X, NetBSD. Also a

Cygwin porting for Windows exists, but due to the limited hardware control, the full

functionality is not guaranteed. Python and C++ are used as main programming languages in

GNU Radio as well as the below introduced GNU Radio Companion (GRC).

Since the GNU Radio framework is the central point of data streams sent towards and

received from USRP/2, its structure will be illustrated step by step during the whole thesis.

http://tldp.org/LDP/abs/html

Software-Defined Radio with GNU Radio and USRP/2

 - 15 -

2.6. GNU Radio Companion (GRC)

Since it is easier to handle information flow graphically, GNU Radio offers with its application

GNU Radio Companion the possibility to form a flow chart with graphical block elements.

This application provides numerous predefined blocks, organized in different groups like

signal sources, signal sinks as well as modulation and demodulation functions.

As signal source for instance, USRP/2, audio card, wav files, signal generators or UDP/TCP

ports may be used. Being installed with GNU Radio, GRC can be run from Linux by simply

typing “grc” in an xterm shell.

GRC is best illustrated by the typical FM radio receiver example.

Figure 9: GRC FM receiver example usrp_wbfm_receive.grc adapted for USRP2

Software-Defined Radio with GNU Radio and USRP/2

 - 16 -

Figure 9 shows an adapted GRC example for a FM receiver with audio sink, based on

$GNURADIOROOT/grc/examples/usrp_wbfm_receive.grc.

Since this example originally uses USRP as data source, the source block has to be replaced

by “USRP2 Source” block from category USRP (drag and drop). Blocks are connected to each

other by clicking first to an out connector, followed by a click on the in connector. Double

clicking opens the property window of a block.

Basic understanding in working with graphical signal flow graphs may be extended by having

a look at

http://www.gnuradio.org/trac/wiki/GNURadioCompanion.

2.6.1. GRC USRP2 Source block

First of all, the USRP2 Source block needs to be configured according to project dependent

requirements. Since the provided usrp_wbfm_receive.grc example as shown in Figure 9

ought to be used, the complex output type from USRP2 Source block needs to connect to

the WBFM Receive block.

Below, a set of provided USRP2 Source block parameters according Figure 10 is described. All

red marked parameters are mandatory and/or not identified as valid until they are colored

black!

 Output Type

This parameter provides a selection of output data type according to the selected

block. Possible choices here are Short or Complex.

The most common format depending on the common USRP2 configuration is 16-bit I

& 16-bit Q with I in top of a 32-bit word. Detailed information about USRP data

structure is provided in chapter 3.4.

Software-Defined Radio with GNU Radio and USRP/2

 - 17 -

Figure 10: USRP2 block properties

 Interface

Linux notation of the interface where USRP2 is connected to.

 MAC Addr

MAC Address of the USPR2 Ethernet interface. This parameter is only mandatory if

several USRP2 devices are used over one PC Ethernet interface card.

 Decimation

This parameter describes the internal decimation factor of the USRP2. The ADC

sample rate of USPR2 is at 100 MS/s. The ADC chips’ rate of 100e6 divided by this

decimation number results in the output sample rate sent to the PC. The minimum

Software-Defined Radio with GNU Radio and USRP/2

 - 18 -

value for decimation is 4, maximum is 512. Further information about decimation

rate calculations is provided in chapter 3.2.3.

 Frequency (Hz)

Sets the USRP2 receiver frequency, e.g. 101.8 MHz for FM reception.

 LO Offset (Hz)

Set receive LO offset frequency of the used daughterboard. According to [4] this

value can be ignored (for further study).

 Gain (dB)

This parameter sets the receiver gain. To receive a FM radio signal, a gain of at least

30 dB has to be set.

The properties of a GRC block are told “parameters”. These can be set statically by writing a

fixed number in there or with variable values, which may be used for some dependent

calculations (like sample rates) or which can be changed while the project is running. A

variable, as known in every programming language, can be defined by the appropriate GRC

block called “Variable”.

One possibility to change the variables’ value while the project is running is to use sliders. In

GRC slider block, the default value, a minimum and a maximum value are set. The default

value defines the value where the slider resides while the project is started, the minimum

and maximum values define the range of possible values.

Parameters can be expressed by variables, see Figure 9. For instance the variable “decim” is

used as decimation factor. GRC recognizes, if a variable is set for a parameter and has an

appropriate data type. If not, GRC marks this value red and the GRC project can’t be run.

The benefit by gathering a variable here is that one variables’ value has to be changed and

other variables’ contents are calculated autonomous. In the GRC WBFM Receice example,

the parameter “Quadrature Rate” from WBFM Receive block is calculated by 100e6 divided

by “decim” variable – so we get a value of 240.385kS/s.

Software-Defined Radio with GNU Radio and USRP/2

 - 19 -

There are also 3 variable sliders, with which customizations of volume and frequency values

can be done in the GUI during the running GRC project.

Further information of USRP2 in conjunction with GNU radio can be found at

http://gnuradio.org/trac/wiki/USRP2GenFAQ and

http://gnuradio.org/trac/wiki/USRP2UserFAQ.

2.6.2. Explanation of blocks

At first, the “WBFM Receive” block from category Modulators is considered exemplarily. As

shown in Figure 11, this block has a blue input and orange output connector. In GRC, the

connector color specifies the data type.

Blue defines a connector with complex data type,

 orange the data type float,

 yellow stands for data type short,

 and magenta for characters.

Connectors of different colors need to be connected via a type conversion block found in

“Type Conversions”-category.

Figure 11: GRC block “WBFM Receive” with opened properties window

Software-Defined Radio with GNU Radio and USRP/2

 - 20 -

After a double click to the “WBFM Receive” block, the ID and two more parameters are

shown. ID identifies the name to the according xml-definition for this block. This xml block

name (here blks2_wfm_rcv) is followed by an underscore and an auto incremented number

making it possible to use several blocks of the same type in one GRC project.

blks2_ wfm_rcv _0

python package name of python function
block id in current GRC

project

If there are several blocks with identical names and different connector types, an additional

underscore with the provided type conversion is shown in the ID (e.g. FM Demod block). The

abbreviation _cf for instance stands for complex input and float output stream of a block.

In Figure 9, some more blocks were used which aren’t

 FFT sink

The FFT sink block creates a python window in which the Fourier spectrum of the

connected signal is shown.

 Multiply Const

This block serves as a variable audio volume control. During runtime, the current

value of the volume slider variable is multiplied with the audio stream, resulting in an

adjustable audio amplitude.

 Audio Sink

The audio sink block builds the software interface to the PC audio card. By connecting

a GRC stream to this block, the signal will become audible through audio speakers

connected to the sound card.

Software-Defined Radio with GNU Radio and USRP/2

 - 21 -

2.6.3. Programming layers of GRC

In the following graph, the processing layers below a GRC block are described.

2.6.4. XML block definition

Definitions of GRC standard xml blocks can be found in

“/usr/local/share/gnuradio/grc/blocks/”, depending on the installation path prefixes.

As mentioned above, the block ID refers to the file xml file, here “blks2_wfm_rcv.xml”.

2.6.5. Abstract of xml source code

FILE: /usr/local/share/gnuradio/grc/blocks/blks2_wfm_rcv.xml

<?xml version="1.0"?>

<!--

##WBFM Receive

 -->

<block>

<name>WBFM Receive</name>

<key>blks2_wfm_rcv</key>

<import>from gnuradio import blks2</import>

<make>blks2.wfm_rcv(

quad_rate=$quad_rate,

audio_decimation=$audio_decimation,

)</make>

<param>

<name>Quadrature Rate</name>

<key>quad_rate</key>

GRC-Block in flow graph with ID parameter

Block definition in XML

Conversion of GRC GUI variables into Python variables using cheetah template engine

Python functions may use fast C code over SWIG interface

Software-Defined Radio with GNU Radio and USRP/2

 - 22 -

<type>real</type>

</param>

<param>

<name>Audio Decimation</name>

<key>audio_decimation</key>

<type>int</type>

</param>

<sink>

<name>in</name>

<type>complex</type>

</sink>

<source>

<name>out</name>

<type>float</type>

</source>

</block>

By considering this code, the xml structure depending on tags becomes clear.

 <import>

<import>from gnuradio import blks2</import>

Package import syntax according to Python conformation. This tag imports the blks2

module from $PYTHONPATH/gnuradio folder (see tag descriptions below).

 <make>

<make>blks2.wfm_rcv(

quad_rate=$quad_rate,

audio_decimation=$audio_decimation,

)</make>

The make-tags are handled as cheetah-templates (see www.cheetahtemplate.org

for further information). The templates replace the GRC variables starting with $

from GRC GUI before transferring them to the called function (here blks2.wfm_rcv

from gnuradio.bkls2 package).

 <param>

<param>

<name>Audio Decimation</name>

<key>audio_decimation</key>

<type>int</type>

</param>

The param-tags define usable variables for this block in GRC. With the key-tag, the

GRC-variable name is given (audio_decimation), that is replaced by the template-

machine with the value stored in $audio_decimation. The declaration is done in the

make-tag by audio_decimation=$audio_decimation.

Software-Defined Radio with GNU Radio and USRP/2

 - 23 -

 <sink>

Defines input data type in type-tag

 <source>

Defines output data type in type-tag

2.6.6. Python code

To get the information what is really done after putting the GRC variables through the

cheetah template, it’s needed to follow the import-tag. Since a function is called in the

make-tag (blks2.wfm_rcv), this function is included from the imported package

gnuradio.blks2. Hence we have to search for the function in

$PYTHONPATH/gnuradio/blks2/.

Included in this folder there are just three __init__.py* files, that define this folder as Python

module. The file __init__.py consists of a for-loop that according to the explanation parses

the blks2impl-directory to import all contained modules. For fundamentals about Python

packages and modules have a look at

http://docs.python.org/tutorial/modules.html#packages.

Section of FILE: $PYTHONPATH/gnuradio/blks2/__init__.py

Semi-hideous kludge to import everything in the blks2impl directory

into the gnuradio.blks2 namespace. This keeps us from having to remember

to manually update this file.

“Redirected“ by the blks2/__init__.py, the function is found in ../blks2impl directory: here

$PYTHONPATH/gnuradio/blks2impl/wfm_rcv.py.

Further information about how the FM demodulation is done is provided under:

http://radioware.nd.edu/documentation/basic-gnuradio/exploring-the-fm-receiver

http://radioware.nd.edu/documentation/basic-gnuradio/exploring-the-fm-receiver

Software-Defined Radio with GNU Radio and USRP/2

 - 24 -

For users, which aren’t experienced in GNU Radio and/or Python, having a look at the

following resources will be helpful.

 http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html

 http://gnuradio.org/trac/wiki/Tutorials/WritePythonApplications

These resources give a good basic knowledge about Python in addition with GNU Radio and

also about FM basics.

2.6.7. SWIG interface

Likewise there are more complex blocks such as the USRP/2 Source and Sink blocks. In these

blocks a SWIG interface is used for inclusion of compiled C++ code, which runs essentially

faster than the Python interpreter. More information about SWIG is provided under:

http://www.swig.org/exec.html

ID parameter of GRC-Block

(blks2_wfm_rcv)

Block definition in XML

/usr/local/share/gnuradio/grc/blocks/blks2_wfm_rcv.xml

In this example sub-inclusion of blks2impl from

$PYTHONPATH/gnuradio/blks2/__init__.py

<import>- tag defines which module is used

(gnuradio.blks2)

<make>-tag defines which function is used

wfm_rcv()

 and converts GRC GUI variables into python variables using cheetah template engine

Class wfm_rcv() defined in

$PYTHONPATH/gnuradio/blks2impl/wfm_rcv.py

If applicable, precompiled C++ code provided trough SWIG interface

http://www.swig.org/exec.html

Software-Defined Radio with GNU Radio and USRP/2

 - 25 -

2.7. “Getting started”-problems

A first introduction to GNU Radio and USRP2 often leads to

$GNURADIOROOT/gnuradio-examples/python/audio/dial_tone.py

to have a look at the provided code.

Later on, often mentioned examples like the GRC project usrp2_fft.py in

$GNURADIOROOT/grc/examples/usrp/usrp2_fft.grc

or

$GNURADIOROOT/gnuradio-examples/python/usrp2/usrp2_wfm_rcv.py

might be interesting to demodulate received FM signals.

If a FM modulated signal is received with USRP2, the demodulated signal (like FM radio) may

be sent to an audio sink like a sound card. Implementing this chain will definitively result in

resampling problems, since an audio card has its own clock - running independent from

USRP2. Even if a sample rate supported by the used audio card is found, whose multiple of

meets exactly the ADC rate 100e6, the two clocks will run apart of each other due to clock

instabilities in ppm range.

Figure 12: Signal path from FM VHF to audio sink

Software-Defined Radio with GNU Radio and USRP/2

 - 26 -

2.7.1. Audio sink problems

In Figure 9, the USRP2 decimation rate is set to 416 and the audio decimation to 5. This

results in a sample rate of 48.077kS/s.

100𝑒6 𝑆/𝑠

416 ∗ 5
≈ 48 077 𝑆/𝑠

Sending a data stream with this sampling rate to an audio sink operating at 48000 S/s, 77

Samples each second will be buffered – resulting in a non-audible deeper audio frequency.

By running about half an hour, a buffer with a size of 138 600 samples (equivalent to 541

kbyte) is filled, since not all provided data can be handled by the audio sink at 48k.

77 𝑆/𝑠 ∗ 60𝑠 ∗ 30 = 138600 𝑆
30 𝑚𝑖𝑛

Unplugging the Ethernet cable between PC and USRP2 after this time (while the audio

capture is still running) will result in a continuous play of the sound which was streamed into

USPR2. Since running on a sample rate of 48k, the sound card needs nearly 3 seconds to

clear the filled buffer and keeps on playing in this time as the USRP2 would still be

connected.

138.6𝑒3 𝑆

48𝑒3 𝑆/𝑠
≈ 2.89 𝑠

Depending on the used audio driver and hardware, someday a buffer overflow or underflow

occurs – printing out one of the following error codes:

 “u” = USRP

 “a” = audio (sound card)

 “O” = overrun (PC not keeping up with received data from usrp or audio card)

 “U” = underrun (PC not providing data quickly enough)

 “aUaU” = audio underrun (not enough samples ready to send to sound USRP sink)

 “S” = indicates a sequence number error in Ethernet packets marking an overrun

from USRP to PC like “O” [3][5][6]

Software-Defined Radio with GNU Radio and USRP/2

 - 27 -

The most common audio architecture used in Linux is “Advanced Linux Sound Architecture”

(ALSA). It includes a software resampler device called plughw, which provides a sample rate

adaptation in a given range, see

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html and

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm_plugins.html

Using plughw:0,0 as audio output device seems to adjust USRP2’s sample rate better to the

audio sink. Nevertheless after about 3 hours a reproducible overflow occurred.

2.7.2. ALSA supported audio interfaces in GNU Radio

In GNU Radio, the used audio module can be specified in the system wide config file

/usr/local/etc/gnuradio/conf.d/gnuradio-core.conf. In section [audio] the

audio_module = auto is set by default, that makes the system selecting one. Some more

possibilities are listed in this file such as audio_alsa and audio_oss.

As shown in $PYTHONPATH/gnuradio/audio.py, all possible modules are defined in an

array. If “auto” is defined, the first fitting module (typically audio_alsa) will be used. Using

ALSA, we need to have a look at /usr/local/etc/gnuradio/conf.d/gr-audio-alsa.conf

for our system-wide GNU Radio ALSA configuration. In this config file, among other things

the default input and output devices can be set and the verbose mode can be enabled. If the

verbose mode is enabled, detailed information about the audio cards’ supported formats,

sampling rates, number of channels and sample resolution is printed out each time a GNU

Radio application is run that connects to the ALSA driver.

2.7.3. Audio synchronization approach

In digital audio processing, the clocking issues are crucial. Since digital audio recording and

playback devices use their own oscillators (differing a little from each other), synchronization

needs to be done. One approach is called Wordclock, used in several well known audio

formats like S/PDIF and AES/EBU. It is a master clock signal to synchronize slave devices –

independently of their own clocks.

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm_plugins.html

Software-Defined Radio with GNU Radio and USRP/2

 - 28 -

In S/PDIF, a 44,1 kHz Wordclock signal (simple rectangular signal) may be used as master

clock. The appropriate coding format in S/PDIF is biphase-mark-code (BMC). By encoding a

binary data stream with BMC, the encoded signal changes polarity for every data bit,

according to every new clock period. Additionally, a polarity change can occur in the middle

of the data bit, depending on the current data signal. A data bit logical “1” results in change

of polarity in the middle of bit time, a “0” holds the polarity of the encoded signal constant.

[7][8][9]

Figure 13: Biphase mark code

The frequency of the clock is twice the bit rate, if all data bits are set to 0, called “digital

black” (see Figure 14). This fact is used in purchasable Wordclock generators for clock

synchronizations.

Figure 14: Biphase mark code with all data bits set to zero

This synchronization feature of S/PDIF might also be used to synchronize an audio card by

sending the USRP/2 clock signals there, similarly like word clock generators do. No data

Software-Defined Radio with GNU Radio and USRP/2

 - 29 -

signal is included in the stream (only “0”-bits), just a clock reference is built during changed

polarity.

One possibility for audio synchronization might be to lock USRP2 initially to an external

reference signal (10 MHz), sent to the REF CLOCK SMA connector at the front side of USRP2.

An optical Toslink sender chip like Toshiba TOTX173 might be used to convert TTL conform

signals from the given reference clock to an optical fiber, which is connected to S/PDIF input

port of the audio sink.

Figure 15: Block diagram for possible clock synchronization

In this assembly, the RF input needs to be adjusted to TTL levels as requested as input signal

range of TOTX173. Also the TOTX173 needs to be supplied with VCC and be soldered onto

PCB. Further information provided in datasheet:

http://www.toshiba.com/taec/components/Datasheet/TOTX173.pdf

Another possibility might be to extract the USRP2 onboard clock. Enabling the test clock pins

on the motherboard by putting the line “clocks_enable_test_clk(true,1)” in USRP2 firmware

results in an output test clock on the two middle pins of the 4 pin connector J503. Pins 1 and

4 are ground connectors. For further information have a look at

http://www.mail-archive.com/discuss-gnuradio@gnu.org/msg19306.html

Since the audio sync problem was not crucial for the projects of this work, further

investigation has been moved to another work topic. This chapter summarized the

considerations done so far without any implementation aspects.

Software-Defined Radio with GNU Radio and USRP/2

 - 30 -

3. Adapted GNU Radio Projects

Since USRP2 release is quite new, most available projects and documentations are provided

for USRP only. The following chapter will describe how USRP2 data flow is handled and how

USRP projects may be adapted to be used with USRP2.

3.1. RDS FM receiver

Radio Data System (RDS) is a protocol to transmit additional information over FM radio

broadcast. There is a project for GNU Radio provided by http://www.cgran.org

contributed by Dimitrios Symeonidis. By installing the source code, a new block called gr-rds

will be built which demodulates a received RDS signal embedded in a FM radio signal. The

source code is available on

https://www.cgran.org/wiki/RDS

and also contained in the install.tar archive mentioned in Annex B. If being interested in,

explicit information about the RDS standard may be found in

http://www.rds.org.uk/rds98/rds_standards.htm

For adapting the already functional RDS project, no direct knowledge of RDS protocol is

necessary. Only a exchange of the USRP/2 interface has to be done.

Figure 16: Flow graph of RDS Receiver block gr-rds [10]

https://www.cgran.org/wiki/RDS

Software-Defined Radio with GNU Radio and USRP/2

 - 31 -

Since this project supports only USRP so far, some extensions need to be done in the file

$GNURADIOROOT/gr-rds/src/python/usrp_rds_rx.py (if installed as described in Annex

B). Copying this file to a new file, e.g. usrp2_rds_rx.py, preserves the original file from being

overwritten. The TVRX daughterboard is used as FM receive frontend.

Line 3 change usrp to usrp2:

from gnuradio import gr, usrp2, optfir, blks2, rds, audio

comment out line 8

#from usrpm import usrp_dbid

To connect to USRP2 the following options can be used.

connect to USRP

usrp_decim = 416 # old: usrp_decim = 250

self.u = usrp2.source_32fc("eth1") # old: self.u = usrp.source_c(0, usrp_decim)

print "USRP MAC: ", self.u.mac_addr()# old: print "USRP Serial: ", self.u.serial_number()

adc_rate = self.u.adc_rate() # 100 MS/s

usrp_rate = adc_rate / usrp_decim # ~240 kS/s

audio_decim = 5

audio_rate = usrp_rate / audio_decim # ~48k kS/s

self.u.set_decim(usrp_decim)

In the following, checking of available daughterboards is by-passed. The USRP2 configuration

used here is based on one fixed subdevice (TVRX receiver).

if options.rx_subdev_spec is None:

options.rx_subdev_spec = usrp.pick_subdev(self.u,

(usrp_dbid.TV_RX, usrp_dbid.TV_RX_REV_2, usrp_dbid.BASIC_RX))

self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))

self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)

print "Using d'board", self.subdev.side_and_name()

 # gain, volume, frequency

 self.gain = options.gain

if options.gain is None:

g = self.subdev.gain_range()

self.gain = g[1]

Software-Defined Radio with GNU Radio and USRP/2

 - 32 -

Further non-existent functions are also commented out from GUI

hbox.Add((5,0), 1)

self.myform['gain'] = form.quantized_slider_field(parent=self.panel, sizer=hbox,

label="Gain", weight=3, range=self.subdev.gain_range(), callback=self.set_gain)

hbox.Add((5,0), 0)

r = usrp.tune(self.u, 0, self.subdev, target_freq)

 r = self.u.set_center_freq(target_freq)

self.myform['gain'].set_value(gain)

self.subdev.set_gain(gain)

 self.u.set_gain(gain)

3.2. Capture samples from USRP2 in C++

For debugging reasons and to track the communication between URSP2 and GNU Radio, the

source code of a capture software is included in

$GNURADIOROOT/usrp2/host/apps/rx_streaming_samples.cc

Executing the compiled version rx_streaming_samples allows a byte-by-byte capturing of

the samples that the PC receives via the Gbit-Ethernet interface. Running

$GNURADIOROOT/usrp2/host/apps/rx_streaming_samples –h

from command line interface offers following options:

Usage: rx_streaming_samples [options]

Options:

 -h show this message and exit

 -e ETH_INTERFACE specify ethernet interface [default=eth0]

 -m MAC_ADDR mac address of USRP2 HH:HH [default=first one found]

 -f FREQUENCY specify receive center frequency in Hz [default=0.0]

 -d DECIM specify receive decimation rate [default=5]

 -g GAIN specify receive daughterboard gain [default=0]

 -N NSAMPLES specify number of samples to receive [default=infinite]

 -o OUTPUT_FILENAME specify file to receive samples [default=none]

 -s write complex<short> [default=complex<float>]

 -v verbose output

This code uses the rx_sample_handler to directly handle received raw sample data from

USRP2. In GNU Radio C++ API, further information about the used data types can be found.

The received raw sample data is packed into big-endian 32-bit unsigned ints for transport

when standard USRP2 configuration is used. The packets contain 16-bit I data followed by

16-bit Q data organized in a 32-bit word.

Software-Defined Radio with GNU Radio and USRP/2

 - 33 -

Wire format (big-endian)

I1 Q1 I2 Q2 I3 Q3

0x01FC 0x0021 0x01F9 0x0043 0x01F3 0x0067

Host format (little-endian)

I1 Q1 I2 Q2 I3 Q3

0xFC01 0x2100 0xF901 0x4300 0xF301 0x6700

3.2.1. Convert rx_streaming_samples outfile to csv

The source code of rx_streaming_samples.cc makes clear, how received samples from

USRP2 are processed. The copy functions are found in

$GNURADIOROOT/usrp2/host/lib/copiers.cc.

In copy_u2_16sc_to_host_16sc for instance, a byte-swap function is run trough, if the

application rx_streaming_samples is executed with parameter “-s”. The samples are

written into an output file using parameter “–o”.

The function copy_u2_16sc_to_host_16sc performs a conversion from USRP2 “wire format”

to “host format” (big-endian to little-endian format). With the given code it becomes clear

which data types are used and how the byte-by-byte rotation is done.

The output file is filled with complex <float> - organized in 2-byte I followed by 2-byte Q data

little-endian format. A reformatting of the outfile allows handling the ADC values in a

common manner.

For data visualization (e.g. in a spreadsheet program) a csv-file with integer values is created.

I & Q data are separated with comma as delimiter. Further details concerning the csv-

format can be found at

http://en.wikipedia.org/wiki/Comma-separated_values

The following code meets this requirement, if the data are captured with parameter “-s”

from rx_streaming_samples application and stored in a file called outfile.txt. After the code

having saved to a file called convert_outfile_to_csv.c, it can be compiled by running

g++ convert_outfile_to_csv.c –o convert_outfile_to_csv

http://en.wikipedia.org/wiki/Comma-separated_values

Software-Defined Radio with GNU Radio and USRP/2

 - 34 -

By running the compiled version, all converted data are printed to STDOUT – so redirecting

the data stream to a file by

convert_outfile_to_csv > outfile.csv

might be useful.

3.2.2. C++ source code for csv conversion

#include <iostream>

#include <fstream>

#include <complex>

using namespace std;

int main() {

 char * buffer;

 char buffer_c;

 int length = 16

 int iq_blk_len = 4; // 4 byte

 buffer = new char [iq_blk_len];

 ifstream infile;

 infile.open("outfile.txt", ios::binary);

 std::complex<int16_t> cplex;

 int16_t var_r;

 int16_t var_q;

 cout<<"I:,Q:\n";

 int i = 0;

 while(infile.good()) {

 i+=1;

 infile.read(buffer,iq_blk_len);

 // LITTLE ENDIAN AFTER CONVERSION 2 HOST!

 var_r =(((buffer[1]&0xFF)<<8) + (buffer[0]&0xFF));

 var_q =(((buffer[3]&0xFF)<<8) + (buffer[2]&0xFF));

 cplex =std::complex<int16_t>(var_r,var_q);

 cout<<cplex.real()<<","<<cplex.imag()<<endl;

 }

 infile.close();

 delete[] buffer;

 cout<<endl;

 return 0;

}

Chapter 3.4 provides more detailed information about byte reordering and source code

compilation. First, some variables are defined. Important data types are char (size 8 bit) and

int16_t (size 16 bit).

Software-Defined Radio with GNU Radio and USRP/2

 - 35 -

The recorded outfile.txt (see above chapter) is opened and read by 4 byte blocks. Every 4

byte block of the file consists of 16 bit I and 16 bit Q data. Before writing var_r and var_q to

STDOUT, a byte swap is executed since the samples are stored in little-endian format. After

parsing the whole outfile.txt and printing all samples (separated by a comma) to STDOUT,

the file is closed and the allocated character pointer buffer is freed.

3.2.3. Data illustration in a diagram

Figure 17: SDR block for FM signal processing

Having connected a signal generator with a carrier frequency of 100.001 MHz and using

TVRX board, the following command produces a valid file named outfile.txt.

./rx_streaming_samples –e eth1 –f 1e8 –d 416 –o outfile.txt –N 50k –s –g 30

Software-Defined Radio with GNU Radio and USRP/2

 - 36 -

The meaning of the command line parameters is:

 select eth1 as interface where USRP2 is connected to

 set the USRP2s’ center frequency to 100 MHz

 set a decimation factor of 416 – resulting in 240.384 kS/s

 specify that the recorded data should be written to a file called outfile.txt

 use complex<short> as data type written to file

 set receive daughterboard gain to 30

Because the USRP2s’ center frequency is set to 100 MHz, the 1k offset from the signal

generators’ frequency is written to our outfile. After opening the converted data in a

spreadsheet program, the comma separated values need to be divided into columns if not

done automatically. Afterwards a column oriented chart is generated as shown in Figure 18.

Figure 18: Illustration of csv data after byte swapping

Considering how many samples per period were taken and dividing our sample rate trough

that value, the former input frequency can be determined. Potentially a little shifted

frequency may occur originated from relative clock stabilities between source and USRP2.

1𝑒8 𝐻𝑧
𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑
= 𝑓 [𝐻𝑧]

-4

-3

-2

-1

0

1

2

3

4

1
3

7
7

3
1

0
9

1
4

5
1

8
1

2
1

7
2

5
3

2
8

9
3

2
5

3
6

1
3

9
7

4
3

3
4

6
9

5
0

5
5

4
1

5
7

7
6

1
3

6
4

9
6

8
5

7
2

1
7

5
7

7
9

3
8

2
9

8
6

5
9

0
1

9
3

7
9

7
3

A
D

C
 v

al
u

e
 /

 1
0

0
0

t [1/sample rate]

I

Q

Software-Defined Radio with GNU Radio and USRP/2

 - 37 -

In Figure 18 for example, approximately 95 samples per period were taken. Regarding the

used decimation factor, this results in a calculated frequency of 2.53 kHz, instead of the

expected 1 kHz signal.

1𝑒8 𝐻𝑧
416

95
= 2.53 𝑘𝐻𝑧

This deviation is due to clock instabilities. An offset of 1.53 kHz related to a center frequency

of 100 MHz corresponds to a clock stability of about 15 ppm.

1𝑒8 𝐻𝑧

 2530 − 1000 𝐻𝑧
= 15.3𝑒−6 = 15 𝑝𝑝𝑚

This agrees well with USRP2 internal clock stability of about 20 ppm. [3]

3.3. Wireshark trace

Wireshark, formerly known as Ethereal, is a well known open source application for sniffing

Ethernet traffic. The source code is provided under:

http://www.wireshark.org

Sniffing the network traffic allows to examine the data streams, which are interchanged

between USRP2 and the host. On the next page, a section of a Wireshark trace is shown. The

stream direction of this Ethernet packet is from USRP2 to PC, also visible in the source and

destination fields of the header (IntelCor describes the host Gbit-Ethernet card).

Figure 19: CSV visualization of traced samples

-600

-400

-200

0

200

400

600

1 6 1116212631364146515661667176818691

Software-Defined Radio with GNU Radio and USRP/2

 - 38 -

No. Time Source Destination Protocol Info

 84 0.166222 IeeeRegi_85:30:ed IntelCor_35:3e:c2 0xbeef Ethernet II

Frame 84 (1512 bytes on wire, 1512 bytes captured)

Data (1498 bytes)

...

0480 01 fc 00 21 01 f9 00 43 01 f3 00 67 01 eb 00 88 ...!...C...g....

0490 01 e1 00 a8 01 d4 00 cb 01 c5 00 eb 01 b4 01 09

04a0 01 a0 01 25 01 8b 01 43 01 74 01 5d 01 5b 01 76 ...%...C.t.].[.v

04b0 01 42 01 8c 01 26 01 a0 01 08 01 b3 00 e9 01 c5 .B...&..........

...

05b0 01 43 fe 78 01 61 fe 90 01 7a fe aa 01 92 fe c8 .C.x.a...z......

05c0 01 a8 fe e5 01 bb ff 06 01 cc ff 26 01 db ff 48 &...H

05d0 01 e7 ff 6b 01 f0 ff 8f 01 f7 ff b3 01 fb ff da ...k............

05e0 01 fd 00 00 01 fc 00 25 %

This data packet is fragmented and converted to decimal values as shown below:

|- I -|- Q -|- I -|- Q -|- I -|- Q -|- I -|- Q -|

|01 fc|00 21|01 f9|00 43|01 f3|00 67|01 eb|00 88|

| 508| 33| 505| 67| 499| 103| 491| 136|

This exactly results in the following decimal I and Q values

508,33

505,67

499,103

491,136

481,168

468,203

453,235

436,265

416,293

395,323

372,349

347,374

322,396

294,416

264,435

233,453

202,468

168,480

135,492

101,499

67,505

32,509

-2,511

-38,508

-72,505

-107,498

-141,489

-176,478

-211,465

-243,448

-273,430

-303,409

-333,387

-359,362

-383,336

-406,309

-425,278

-445,248

-460,219

-475,187

-487,152

-496,117

-502,84

-507,49

-509,14

-509,-20

-507,-55

-502,-91

-493,-129

-482,-164

-471,-197

-454,-230

-437,-262

-418,-292

-396,-321

-372,-350

-344,-376

-316,-400

-287,-421

-255,-441

-223,-458

-189,-472

-153,-486

-118,-496

-81,-503

-43,-508

-8,-510

26,-509

61,-506

98,-500

133,-492

167,-482

200,-467

232,-453

265,-436

294,-414

323,-392

353,-368

378,-342

402,-312

424,-283

443,-250

460,-218

475,-184

487,-149

496,-113

503,-77

507,-38

509,0

508,37

and exactly to one period of the appropriate chart built with these CSV values as it can be

seen in Figure 19.

Software-Defined Radio with GNU Radio and USRP/2

 - 39 -

3.4. Sending Samples

Before a data stream is sent with USRP/2, the appropriate I & Q values as well as the timing

context of the samples have to be calculated. In this example, a complex sine wave will be

calculated. By stepping through the unit circle in equivalent degree values (e.g. 22.5°) and

plotting this amplitude in equidistant time distances (t), a sine respectively cosine function

results.

Figure 20: Principle of I & Q values for a sine function between 90° and 270°

In the following code, one sine wave period is represented with exactly 200 complex values.

 short sample[400];

 // calculate sine wave with amplitude of 2^12 in 200 steps

 for (int i = 0; i < 200; i++) {

 // first 2 bytes (size of short is 2 byte) are cos-function (I)

 // and second sin-function (Q). (i<<1) multiplies increment variable i by two

 sample[i<<1] = 4096*cos(2*M_PI*(i % 200)/200);

 sample[(i<<1) + 1] = 4096*sin(2*M_PI*(i % 200)/200);

 }

These discrete values are not related to time scale so far. To calculate the desired output

frequency the DAC clock frequency as well as any interpolation coefficients of the USRP2 has

to be taken into account.

Software-Defined Radio with GNU Radio and USRP/2

 - 40 -

USRP2 is run with 400 MHz DACs and a static interpolation factor of 4, implemented in the

USRP2 firmware. [3] [11]

With an additional interpolation factor of 500 and with the given sine period of 200 samples

the output frequency can be calculated as follows.

𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒:
𝐷𝐴𝐶 𝑟𝑎𝑡𝑒

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
=

100 𝑀𝑆/𝑠

500
= 200 𝑘𝑆/𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦:
200 𝑘𝑆/𝑠

200 𝑆/𝑝𝑒𝑟𝑖𝑜𝑑
= 1 𝑘𝐻𝑧

Sending 200e3 samples per second the resulting frequency is about 1 kHz.

Figure 21: Calculated sine and cosine functions

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

1 21 41 61 81 101 121 141 161 181

D
A

C
 v

al
u

e

sin(2pf(t)) + cos(2pf(t))

I

Q

Software-Defined Radio with GNU Radio and USRP/2

 - 41 -

3.4.1. Problems with byte orders

While calculating the I and Q values of the sine function, the hex values are printed out and

written to a binary file. Confusingly displayed values and values written to the file are not

identical. This is related to PC architecture. Here, a common Intel architecture with an

internal little-endian memory ordering was used. Since the function fwrite() steps through

the sample-array byte by byte, this results in a platform dependent byte order in the output

file (named outfile), which differs from the displayed values on screen.

Source code to demonstrate byte order problems

#include <iostream>

#include <math.h>

#include <iomanip>

using namespace std;

int main(int argc, char *argv[])

{

 short sample[20];

 // set output format to hex

 cout<<hex;

 // calculate sine wave with amplitude of 2^12 in 200 steps, but output only 10 I&Q samples

 for (int i = 0; i < 10; i++) {

 // first 2 bytes (size of short is 2 byte) are cos-function (I)

 // and second sin-function (Q). (i<<1) multiplies increment variable i by two

 sample[i<<1] = 4096*cos(2*M_PI*(i % 200)/200);

 sample[(i<<1) + 1] = 4096*sin(2*M_PI*(i % 200)/200);

 // print samples to output, formatted in 4 digits with leading zeros

 cout<<setw(4)<<setfill('0')<< (sample[i<<1]) << " ";

 cout<<setw(4)<<setfill('0')<< (sample[(i<<1) + 1])<<endl;

 }

 // open and if not exists create file binary file sine_out_2.bin for writing

 FILE * pFile;

 pFile = fopen("sine_out_2.bin","wb");

 // write sample array byte by byte from memory to file

 fwrite(sample,1,sizeof(sample),pFile);

 // close file pointer

 fclose(pFile);

 // if necessary, insert a system("pause") for windows or the like here

 return 0;

}

Software-Defined Radio with GNU Radio and USRP/2

 - 42 -

Using the g++ compiler, the source code can be compiled by execution of

g++ source_filename.c –o outfile

Normally, the executable flag of the created outfile will be set automatically. If not, this can

be done in Linux with a:

chmod a+x outfile

The application can be run by executing:

./outfile

During execution the following 10 hex values will be displayed on STDOUT:

STDOUT:

1000 0000

0ffd 0080

0ff7 0101

0fed 0181

0fdf 0201

0fcd 0280

0fb7 02ff

0f9d 037d

0f7f 03fa

0f5d 0476

Figure 22: Byte order of sine_out_2.bin (little-endian)

Examining the generated output file sine_out_2.out with a hex editor, the different byte

order can be noticed, see Figure 22. The data on screen are displayed in big-endian (as

usual), but written to the file in little-endian format (as it is common in Intel architectures).

Software-Defined Radio with GNU Radio and USRP/2

 - 43 -

To avoid this problem, the fprintf() function may be used, which operates hardware platform

independently:

#include <iostream>

#include <math.h>

#include <iomanip>

using namespace std;

int main(int argc, char *argv[])

{

 short sample[20];

 // open and if not exists create file binary file sine_out_3.bin for writing

 FILE * pFile;

 pFile = fopen("sine_out_3.bin","wb");

 // set output format to hex

 cout<<hex;

// calculate sine wave with amplitude of 2^12 in 200 steps, but output only 10 I&Q samples

for (int i = 0; i < 10; i++) {

 // first 2 bytes (size of short is 2 byte) are cos-function (I)

 // and second sin-function (Q). (i<<1) multiplies increment variable i by two

 sample[i<<1] = 4096*cos(2*M_PI*(i % 200)/200);

 sample[(i<<1) + 1] = 4096*sin(2*M_PI*(i % 200)/200);

 // write every byte (character = 8 bit) with platform independent function fprintf to file

 fprintf(pFile,"%c",sample[i<<1] & 0xff);

 fprintf(pFile,"%c",sample[i<<1]>>8 & 0xff);

 fprintf(pFile,"%c",sample[(i<<1) + 1] & 0xff);

 fprintf(pFile,"%c",sample[(i<<1) + 1]>>8 & 0xff);

 // print samples to output, formatted in 2 digits with leading zeros

 cout <<setw(2)<<setfill('0') <<(sample[i<<1] & 0xff);

 cout <<setw(2)<<setfill('0') << (sample[i<<1]>>8 & 0xff)<<" ";

 cout <<setw(2)<<setfill('0') << (sample[(i<<1) + 1] & 0xff);

 cout <<setw(2)<<setfill('0') << (sample[(i<<1) + 1]>>8 & 0xff)<<endl;

 }

 // close file pointer

 fclose(pFile);

 // if necessary, insert a system("pause") for windows or the like here

 return 0;

}

Software-Defined Radio with GNU Radio and USRP/2

 - 44 -

Now the standard output on screen and the file content are identical:

STDOUT:

0010 0000

fd0f 8000

f70f 0101

ed0f 8101

df0f 0102

cd0f 8002

b70f ff02

9d0f 7d03

7f0f fa03

5d0f 7604

Figure 23: Platform independent byte order of sine_out_2.bin (little-endian)

The standard output function of GNU Radio to USRP2 (tx_samples) turns the input little-

endian format into the big-endian format that is transferred via Gigabit Ethernet. So the file

format “little-endian” as described above has to be used to write sine wave samples

correctly to the USRP2, see the following sample program call.

GNURADIO_ROOT/usrp2/host/apps/tx_samples –e eth1 –f 0 –I sine_out_2.bin –i 500 -r

Annex F provides a source code that displays the following values and also creates a csv file

with the calculated decimal I & Q values. Byte ordering functions can be traced step by step.

I
I

(dec)

Q

(dec)

I

(hex)

Q

(hex)

I (hex) Q (hex)

I (hex) Q (hex)

 Big Endian (MSB left) Little Endian (MSB right)

0 4096 0 1000 0000 10 00 00 00 00 10 00 00

1 4093 128 0ffd 0080 0f fd 00 80 fd 0f 80 00

2 4087 257 0ff7 0101 0f f7 01 01 f7 0f 01 01

… … … …

197 4077 -385 0fed fe7f 0f ed fe 7f ed 0f 7f fe

198 4087 -257 0ff7 feff 0f f7 fe ff f7 0f ff fe

199 4093 -128 0ffd ff80 0f fd ff 80 fd 0f 80 ff

Software-Defined Radio with GNU Radio and USRP/2

 - 45 -

The little-endian conversion can be done as shown in the code below, or with the network

function htonl from gruel/inet.h. This network function isn’t held in the c++ standard, but

provided with gcc. Its argument is a 32-bit value.

These byte swaps may be done with the following code lines:

full_sample[i] = ((sample[i<<1] >> 8) & 0xff | (sample[i<<1] << 8))<< 16 |

 ((sample[(i<<1) + 1] >> 8) & 0xff | (sample[(i<<1) + 1] << 8) & 0xff00);

 First I-byte is shifted 8 bits right followed by a bitwise AND operation, that defines a

bit mask for the last byte.

 Second I-Byte is shifted 8 bit to the left and also operated with the appropriate bit

mask. The bit masks are necessary because some compilers may cause trouble if a

shift operation of a negative int-value results in writing 0xf-bytes in the left-hand

bytes.

 On first and second I-byte there is a bitwise OR operation performed, which results in

the required 16 bit word.

 This 2-byte word is shifted left by 16 bits, since the I-bytes define the upper 16 digits

of our 32 bit data structure.

 The same byte swap operation is done respectively with the Q-bytes. Finally both 16

bit words are combined with a bitwise OR operation, resulting in a full 32-bit little-

endian I&Q sample.

Software-Defined Radio with GNU Radio and USRP/2

 - 46 -

4. OpenBTS

The OpenBTS Project implements a GSM access point in open source software. Standard

GSM-compatible mobiles can access via the GSM air interface (Um) to USRP and so register

to OpenBTS software running on the host. With this project, the functionality of a GSM Base

Transceiver Station (BTS) from cellular operators can be emulated. The project was founded

by David A. Burgess and Harvind S. Samra with the intention to offer a low cost GSM BTS for

instance as being used in developing countries. [12]

Project source code and further information is provided under

http://www.gnuradio.org/redmine/wiki/1/OpenBTS

The projects basic requirements are

 USRP with 2xRFX900 or 2xRFX1800 transceiver daughterboards

 Asterisk Server

 GNU Radio API

4.1. Block diagram – traditional GSM in short

A traditional GSM core network consists of the following core elements:

 Base Transceiver Station (BTS) and Base Station Controller (BSC)

 Mobile Switching Center (MSC) / Visitor Location Register (VLR)

 Home Location Register (HLR) / Authentication Center (AuC)

Figure 24: summarized GSM block diagram

http://www.gnuradio.org/redmine/wiki/1/OpenBTS

Software-Defined Radio with GNU Radio and USRP/2

 - 47 -

The BTS describes the air interface (Um) to the mobiles. Several BTS are connected to a BSC,

responsible for control functions like handovers while the mobile is moving between radio

cells. The Gateway MSC (GMSC) serves as interface between Public Switched Telephone

Network (PSTN) and the radio cells the mobile is connected to. MSCs control the connected

BSCs and house information of all mobile subscribers connected to the respective MSC area.

VLR and HLR are the databases, where information about the mobile subscriber is held in. In

HLR, all necessary subscriber data are permanently stored and transferred to the VLR of a

guest MSC as a temporary copy, each time the mobile logs into a foreign MSC area. The AuC

is responsible for storage of the secret key Ki, the authentication process using SRES and the

generation of Kc for encrypting the voice data. The other interfaces, e.g. PSTN interface in

Figure 24, are not needed in the following.

Further information about GSM standard and network architecture is provided under

http://www.etsi.org/WebSite/Technologies/gsm.aspx

or under numerous GSM network illustrations like

http://ccnga.uwaterloo.ca/~jscouria/GSM/gsmreport.html

Authentication scheme in short

If a mobile wants to log into a radio cell, the Base Station Subsystem (BSS) sends an

“Authentication Request” with a randomly chosen number RAND that serves as a challenge.

The mobile calculates a value called SRES based on RAND with the Ki secret key stored in its

SIM card. Submitting the SRES to BSS is called “Authentication Response”. The BSS verifies

the SRES and grants access to the network if it’s correct. More information can be found in

[13].

Since OpenBTS doesn’t have access to an operator’s AuC (in which the subscriber’s secret

key information is stored), it just doesn’t care about the mobiles calculated SRES value and

accepts it. For the same reason, the Um interfaces is operated in the no-cipher mode which

means that voice data is not encrypted

After reception of the authentication request, OpenBTS tries to register the mobile

subscriber as SIP-user in Asterisk PBX. So OpenBTS works as an Um-to-SIP gateway.

http://www.etsi.org/WebSite/Technologies/gsm.aspx
http://ccnga.uwaterloo.ca/~jscouria/GSM/gsmreport.html

Software-Defined Radio with GNU Radio and USRP/2

 - 48 -

Further information as well as an installation guide can be found at

https://81.56.142.154/Cour/These/OpenBTS/OpenBTS_Guide_En_v0.1.pdf

Figure 25: Functional principle of SDR with OpenBTS

https://81.56.142.154/Cour/These/OpenBTS/OpenBTS_Guide_En_v0.1.pdf

Software-Defined Radio with GNU Radio and USRP/2

 - 49 -

4.2. Laboratory setup

To avoid disturbances in local cellular networks, the operator’s licensed frequencies can only

be used in a shielded environment. A respective laboratory setup is shown below.

Figure 26: Block diagram of OpenBTS laboratory setup

Starting from Tx SMA connector of the RFX board which is plugged into slot A of USRP

motherboard, a directional coupler is attached. Using this coupler, the Tx signal is decoupled

to the RF input of a spectrum analyzer with a decoupling attenuation of about 20 dB. The

spectrum analyzer traces the Tx signal and visualizes signal strength, used frequency and

operation status of the OpenBTS application.

The second decoupling port of the directional coupler isn’t used and can be left open. This

can be done because a signal which might be reflected there (starting from Tx chain of UE) is

attenuated by a 20 dB attenuator, by circulator decoupling, another 20 dB attenuator, 20 dB

directional coupler decoupling and vice versa, resulting in an attenuation of approx. 140 dB.

Also mismatching of connectors can be neglected.

Behind the coupler, a 20 dB attenuator absorbs a part of the transmitted signal from USRP.

The following center of the assembly is built by a circulator, used for decoupling of the

receive and the transmit path. A signal arriving on an arbitrary port is passed to the next port

in direction of arrow only with little insertion loss, to the next port against the arrow though

Software-Defined Radio with GNU Radio and USRP/2

 - 50 -

with high attenuation. So the Tx signal from USRP is passed to the UE but decoupled from

USRP Rx chain and a signal sent by the mobile is circulated to USRP Rx board but decoupled

from USRP Tx chain.

Having passed the circulator, the transmit signal from USRP is attenuated once more and

radiated by an antenna mounted in the screened case.

Figure 27: RF screened case

Figure 28: Opened case with UE and antenna inside

The same antenna serves as receive antenna in USRP Rx chain, which is equivalent to UE Tx

path. A signal sent by the mobile is attenuated about 20 dB, passed by the circulator in the

direction of arrow, again attenuated about 60 dB and finally reaches the Rx SMA connector

of RFX board plugged into USRP slot B.

Software-Defined Radio with GNU Radio and USRP/2

 - 51 -

4.3. S-parameters of circulator and directional coupler

With scattering parameters, also abbreviated S-parameters, information about the response

characteristics of the two devices can be gathered.

Figure 29: S-parameters of a 2 port device (DUT = device under test)

In short, on a 2-port device, the S21 parameter defines the ratio between output wave at

port 2, to input wave at the opposite port. Plotting this behavior over a frequency range

gives detailed information about the amplitude and phase relations from the input to the

output port. S-parameter measurements are done with a network analyzer. The parameter

S12 measures the wave ratio between port 1 (output) and port 2 (input) of the device under

test (DUT). S11 and S22 are called the reflection parameters. Their measurement tells mainly

how matched the input port 1 respectively 2 is by comparing how much power is reflected

while a signal is sent to port 1 respectively 2. It should be noted that the impedances

(usually 50 of both reference planes (see Figure 29) need to be matched.

The circulator is in fact a 3-port device, so with one 3-port measurement all 9 possible S-

parameters are measured at once. To get a general survey about the OpenBTS laboratory

setup, a measurement of the whole assembly around the circulator is shown below.

Software-Defined Radio with GNU Radio and USRP/2

 - 52 -

Figure 30: S-parameter measurement setup

Measuring this whole setup with a 3 port measurement on a network analyzer (Rohde &

Schwarz ZVA 8), results in 9 charts as mentioned above. The interesting s-parameters are S21,

S31, S13, S23 since they show the insertion loss and decoupling isolations. Figure 31 illustrates

the decoupling attenuation of the circulator form port 1 to port 3. A full 3-port s-parameter

measurement of the laboratory setup is provided in Annex E.

Figure 31: Decoupling of the circulator from port 1 to port 3 (S31)

Software-Defined Radio with GNU Radio and USRP/2

 - 53 -

Measured frequencies:

In GSM standard 3GPP TS 45.005 V9.1.0 (2009-11), thirteen possible frequency bands were

defined. The four common bands in use are GSM-850/900/1800/1900, so afterwards the

edge frequencies as well as the appropriate mid-frequency are listed. The mid-frequencies

are calculated values and don’t need to have an associated absolute radio frequency channel

number (ARFCN).

uplink downlink

GSM 850 824 836.5 849 869 881.5 894

GSM 900 890 902.5 915 935 947.5 960

GSM 1800 1710 1747.5 1785 1805 1842.5 1880

GSM 1900 1850 1880 1910 1930 1960 1990

Table 3: Common used GSM bands with low, high and mid-frequencies in MHz

To have an overview about the usability of the used circulator, the measurement

frequencies are chosen in the mid-frequency ranges of all bands regarding uplink and

downlink paths. Uplink and downlink indicate the RF direction as seen from the mobile.

Uplink describes the direction to the base station, downlink means receiving a signal from

the base station. So uplink is the Tx path and downlink the Rx path as seen from mobile.

Regarding this, different frequencies have to be considered between the circulator ports

(see Figure 30). From port 1 to port 2 the insertion loss in uplink frequencies has to be

observed as well as the decoupling attenuation to port 3 in same frequency ranges. Port 3 to

port 1 has to be considered for downlink frequencies respectively the decoupling

attenuation from port 3 to port 2.

port 1 port 2 port 3

port 1 -
836.5, 902.5 [-69 dB]

1747.5, 1880 [-61.5 dB]

836.5, 902.5 [-54.6 dB]

1747.5, 1880 [-57.3 dB]

port 2 - - -

port 3
881.5, 947.5 [-49.6 dB]

1842.5, 1960 [-42.5 dB]

881.5, 947.5 [-74.4 dB]

1842.5, 1960 [-78.2 dB]
-

Table 4: Frequencies in MHz measured for decoupling and insertion loss of circulator

from to

Software-Defined Radio with GNU Radio and USRP/2

 - 54 -

4.4. Components of OpenBTS

Effecting a clear topology, the source code of the OpenBTS project is structured as shown

below.

Apps In the apps folder, the application executable OpenBTS as well as its

sources and the global configuration file OpenBTS.config are stored.

Furthermore an application called sendSimple shows how SMS over SIP is

implemented.

CLI In this directory, relevant source code of the command line interface for

OpenBTS can be found.

CommonLibs Defines some often used classes and functions like the vector class used

to organize data streams and socket wrappers.

Apps

CLI

Common

Control

GSM

HLRSIP

SMS

Trans-
ceiver

TRX-
Manager

Software-Defined Radio with GNU Radio and USRP/2

 - 55 -

Control In this directory, control layer functions are held. They are responsible for

call control (mobile originated/terminated calls), radio resource (paging,

access grant), mobility management (location updates) and SMS control

functions.

GSM Implementation of GSM stack

HLR Interface to Asterisk so far, performing the IMSI authentication. A MySQL

connection is planned.

SIP The SIP interface is held in this directory. Reading and writing of

messages like registrations and invitations connecting to Asterisk are

formed here.

SMS Handling of SMS messages

Transceiver Defines the radio interface, which accesses to USRP. All USRP specific

configurations like setup of registers are done here. All Tx and Rx data

pass these classes. It operates basically as lowest layer in GSM stack,

performing modulation, demodulation and detection of GSM bursts.

Transceiver52M Replacement for Transceiver when using an external highly stable 52

MHz reference clock for USRP. The 52 MHz clock fits well into the clock

hierarchy of GSM and does not require further resampling.

TRXManager TRX Manager builds the interface to the transceiver using UDP sockets. It

is responsible for master clock indications, power control, tuning and

timeslot control.

For some directories, such as for the transceiver, more detailed information is provided in a

contained README file.

Software-Defined Radio with GNU Radio and USRP/2

 - 56 -

4.5. Asterisk

Asterisk is a software implementation of a telephone PBX, allowing attached phones to

communicate with each other and connect them to telephone services like the PSTN and

VoIP services.

OpenBTS uses Asterisk to register each connected mobile over its SIM-Card as SIP user. The

SIP username is build using the 4 characters “IMSI” directly followed by the 15-digit IMSI

number provided in the operators SIM card. Before OpenBTS version 2.5 Lacassine, only the

IMSI number without “IMSI”-prefix was registered as username.

So if a “new” mobile tries to register to OpenBTS, its IMSI number has to be added to the

Asterisk config files, because otherwise no call can be set up. The IMSI number can be found

in the OpenBTS log file (test.out by default) which is declared in the OpenBTS.config file.

GSMLogicalChannel.cpp:76:send: L3 SAP0 sending MM Identity Request type=IMSI

GSML3Message.cpp:162:parseL3: L3 recv MM Identity Response mobile id=IMSI=001010123456789

SIPEngine.cpp:148:Register: SIPEngine::Register mState=Null 0 callID 685931626

SIPInterface.cpp:107:addCall: creating SIP message FIFO callID 685931626

SIPInterface.cpp:167:write: write REGISTER sip:127.0.0.1 SIP/2.0

SIPInterface.cpp:192:drive: read SIP/2.0 404 Not found

SIPInterface.cpp:114:removeCall: removing SIP message FIFO callID 685931626

MobilityManagement.cpp:190:LocationUpdatingController: registration ALLOWED: IMSI=001010123456789

In the above shown transaction, the mobile is asked for its IMSI and responds therewith.

Afterwards OpenBTS tries to register the mobile at Asterisk server running on localhost

(127.0.0.1) via SIP REGISTER but gets back a “404 Not found”.

The registration to OpenBTS is “ALLOWED”, but the SIP registration failed – the user isn’t

known in Asterisk. If the SIP registration has been accomplished successfully, a “SUCCESS”

appears in the log file:

SIPInterface.cpp:167:write: write REGISTER sip:127.0.0.1 SIP/2.0

SIPInterface.cpp:192:drive: read SIP/2.0 200 OK

MobilityManagement.cpp:189:LocationUpdatingController: registration SUCCESS: IMSI=001010123456789

Software-Defined Radio with GNU Radio and USRP/2

 - 57 -

4.5.1. Asterisk configuration

The required config files are sip.conf and extensions.conf from the Asterisk server

installation (normally found at /etc/asterisk, depending on the operating system an

installation).

Creating a new SIP user is done by editing the sip.conf as follows:

[IMSI001010123456789]

canreinvite=no

type=friend

allow=gsm

context=sip-external

host=dynamic

In extensions.conf add

[macro-dialGSM]

exten => s,1,Dial(SIP/${ARG1})

exten => s,2,Goto(s-${DIALSTATUS},1)

exten => s-CANCEL,1,Hangup

exten => s-NOANSWER,1,Hangup

exten => s-BUSY,1,Busy(30)

exten => s-CONGESTION,1,Congestion(30)

exten => s-CHANUNAVAIL,1,playback(ss-noservice)

exten => s-CANCEL,1,Hangup

This code adds an Asterisk macro called dialGSM, recommended by David Burgess. After

macro definition, the local phone number for the SIP-user can be defined in the appropriate

context “sip-external”. [14]

[sip-external]

exten => 2103,1,Macro(dialGSM,IMSI001010123456789)

exten => 2104,1,Macro(dialGSM,IMSI001234567891010)

The local number 2103 is assigned to SIP-user IMSI001010123456789 e.q. and the dialGSM

macro is executed, starting the call with:

exten => s,1,Dial(SIP/IMSI001010123456789)

More information about macros in Asterisk can be found e.q. on

http://www.asteriskguru.com/tutorials/extensions_conf.html

Software-Defined Radio with GNU Radio and USRP/2

 - 58 -

4.6. Automated SIP user registration

Browsing every time the OpenBTS log file while an unknown IMSI-number tries to register is

quite time-consuming. There are several options to solve this issue. The most reliable way is

certainly to extend the registration procedure directly where it happens. In the following, a

possible solution is explained:

4.6.1. Code modifications

$OPENBTSROOT/Control/MobilityManagement.cpp

…

191 if (success)

192 LOG(INFO) << "registration SUCCESS: " << mobID;

193 else {

194 LOG(INFO) << "registration ALLOWED: " << mobID;

 // print an information in the log that a new IMSI was detected

195 LOG(INFO) << "NEW IMSI DETECTED, WRITING TO SIP.CONF: " << mobID.digits();

 // create a file pointer and jump at the end of file /etc/asterisk/sip.conf

196 FILE * pFile;

197 pFile = fopen("/etc/asterisk/sip.conf","a");

198 // write the new SIP user in the sip.conf with the recommended options

199 fprintf(pFile,"\n[IMSI%s]\ncanreinvite=no\ntype=friend\nallow=gsm\ncontext=sip-

external\nhost=dynamic\n",mobID.digits());

 // close file pointer to sip.conf and open extensions.conf

200 fclose(pFile);

201 pFile = fopen("/etc/asterisk/extensions.conf","a");

 // dice a internal phone number between 2500 und 2999

202 short rnd = (rand() % 500 + 2500);

 // write number and SIP user to extensions.conf and close file pointer

203 fprintf(pFile,"\nexten => %i,1,Macro(dialGSM,IMSI%s)\n",rnd,mobID.digits());

204 fclose(pFile);

 // write a log info while reloading asterisk configuration

205 LOG(INFO) << "RELOADING ASTERISK CONFIG... " << system("/etc/init.d/asterisk

reload");

206

207 }

…

Software-Defined Radio with GNU Radio and USRP/2

 - 59 -

The code above extends the Control::LocationUpdatingController in

MobilityManagement.cpp. For several reasons this is the right place to catch the IMSI.

On the SIP message “404 Not found” as seen in the log file section mentioned above can’t be

relied on, because this SIP message also may occur if a called number doesn’t exist in

Asterisk. Also the first Location Update Request from a mobile can’t be used, because the

mobile may send its TMSI if it was logged into another radio cell before. So it’s better to

monitor the variable “success” in the LocationUpdatingController.

Registration with the given code works only if the Asterisk config files are prepared as shown

in chapter 4.5.1. In particular, the context statement with its associated parameters are

static entries at the end of the file. With mobID.digits() the current IMSI can be read out.

To run the modified code, OpenBTS has to be rebuild by execution of “make” in the

$OPENBTSROOT.

4.6.2. Code modifications with welcome SMS

After the successful registration, the assigned subscriber number is appended to

extensions.conf. Therefore a SMS might be sent out to the subscriber as written below.

This source code is adapted from sendSMS()-function in $OPENBTSROOT/CLI/CLI.cpp and

modified for an automatic transaction.

A connection to Asterisk is established and a SIP message sent with message body

"Welcome to IKTmobile - your number is "

followed by the assigned phone number. The delays were added because the registration

process needs a short while. Instead of using sleep() function here, this code might be

swapped out to build a external stand-alone tool that can be executed without delaying the

OpenBTS code (like $OPENBTSROOT/apps/sendSimple).

Software-Defined Radio with GNU Radio and USRP/2

 - 60 -

/*----------------------------*/

UDPSocket sock(0,"127.0.0.1",gConfig.getNum("SIP.Port"));

unsigned port = sock.port();

unsigned callID = random();

sleep(5);

// Just fake out a SIP message.

const char form[] = "MESSAGE sip:IMSI%s@127.0.0.1 SIP/2.0\nVia: SIP/2.0/UDP

127.0.0.1;branch=z9hG4bK776sgdkse\nMax-Forwards: 2\nFrom: %s

<sip:%s@127.0.0.1>:%d;tag=49583\nTo: sip:IMSI%s@127.0.0.1\nCall-ID:

%d@127.0.0.1:5063\nCSeq: 1 MESSAGE\nContent-Type: text/plain\nContent-Length:

%d\n\n%s\n";

char txtBuf[150];

snprintf(txtBuf,sizeof(txtBuf),"%s%i","Welcome to IKTmobile - your number is

",rnd);

char outbuf[2048];

sprintf(outbuf,form,mobID.digits(),"1000","1000",port,mobID.digits(),callID,str

len(txtBuf),txtBuf);

sock.write(outbuf);

sleep(2);

sock.write(outbuf);

sock.close();

/*----------------------------*/

4.7. SWLOOPBACK

OpenBTS offers an implementation of a software loopback operation concerning USRP. By

enabling this compilation flags, no USRP needs to be available since all of the Transceiver

interface data is written to and read from a software buffer.

The flag is enabled by adding the additional parameters to the configure command.

./configure CXXFLAGS=-DSWLOOPBACK CPPFLAGS=-DSWLOOPBACK

Software-Defined Radio with GNU Radio and USRP/2

 - 61 -

4.8. Porting issues USRP/2

So far, OpenBTS uses USRP only as SDR platform. USRP has some significant differences that

affect the handling with USRP2

 PC connection is USB instead of Ethernet

 Different sample rates

 Different FPGA accessibility

 Number of usable transceiver boards

In addition to this, not all necessary functions are implemented in GNU Radio for USRP2 so

far. So in-band signaling is planned to be implemented in 2010, but inoperable right now.

4.8.1. In-band signaling

In-band signaling means a technique to send control information within the normal flow of

user data, e.g. the Dual-tone multi-frequency signaling in analog telephone lines. For

instance, as OpenBTS needs in-band signaling for timing issues - GSM uses TDMA which

needs a very strict time handling – this control information has to be embedded in the USB

data flow. George P. Nychis developed in-band signaling for USRP in GNU Radio.[15]

The respective data structure is shown in Figure 32.

The layout is 32-bits wide. All data is transmitted in little-endian

format across the USB.

+-+

|O|U|D|S|E| RSSI | Chan | mbz | Tag | Payload Len |

+-+

| Timestamp |

+-+

| |

+ +

| Payload |

. .

. .

. .

| |

+ +-+

| ... | .

+-+-+-+-+-+-+-+ .

. .

. Padding .

. .

| |

+-+

Figure 32: Data structure of an in-band signaling block
from $GNURADIOROOT/usrp/doc/inband-signaling-usb

…

 S Start of Burst Flag: Set in an OUT packet if the data is the

 first segment of what is logically a continuous burst of data.

Software-Defined Radio with GNU Radio and USRP/2

 - 62 -

 Must be zero in IN packets.

 E End of Burst Flag: Set in an OUT packet if the data is the

 last segment of what is logically a continuous burst of data.

 Must be zero in IN packets. Underruns are not reported

 when the FPGA runs out of samples between bursts.

…

 Timestamp: 32-bit timestamp.

 On IN packets, the timestamp indicates the time at which the

 first sample of the packet was produced by the A/D converter(s)

 for that channel. On OUT packets, the timestamp specifies the

 time at which the first sample in the packet should go out the

 D/A converter(s) for that channel. If a packet reaches the

 head of the transmit queue, and the current time is later than

 the timestamp, an error is assumed to have occurred and the

 packet is discarded. As a special case, the timestamp

 0xffffffff is interpreted as "Now".

 The time base is a free running 32-bit counter that is

 incremented by the A/D sample-clock.

4.8.2. Lack of USRP2 transceiver slots

To reduce crosstalk between the RX and TX path of the transceiver boards, simply two

transceivers are used – one for RX chain and one for TX. Daughterboard slot A serves as

transmitter, slot B as receiver. Because of USRP2 offers only one transceiver slot, crosstalk

with standard RFX daughterboard will raise a challenge.

Some information about transceiver handling:

http://gnuradio.org/redmine/wiki/gnuradio/OpenBTSDesktopTestingKit

4.8.3. Different sample rates

USRP runs at 64 MHz internal clock, USRP2 on 100 MHz. Because GSM clocks are derived

from a clock running at 13 MHz, resampling is already done in OpenBTS. By use of an

external 52 MHz clock (multiple of 13) this difference between USRP and USRP2 won’t be an

issue.

http://gnuradio.org/redmine/wiki/gnuradio/OpenBTSDesktopTestingKit

Software-Defined Radio with GNU Radio and USRP/2

 - 63 -

4.8.4. Clocking issues

Because in Europe the GSM 1900 band isn’t in use by operators, this might be a nice “test

frequency” in a lab setup over the air interface. But in this frequency range, problems with

the stability of USRPs’ on board oscillator occur.

A very informative article about this issue written by David Burgess can be found at

http://gnuradio.org/redmine/wiki/gnuradio/OpenBTSClocks

Also the solution in re-clocking USRP to 52 MHz with an external oscillator can be found at

http://gnuradio.org/redmine/wiki/gnuradio/OpenBTSClockModifications

4.9. OpenBTS I & Q data

Details of data handling between OpenBTS and USRP are found in USRPDevice.cpp in the

Transceiver directory. As usual, GNU Radio is used as interface to USRP, by sending data in

32-bit words. The data word is separated in 16-bit I and 16-bit Q data.

The data stream provides also information about start and end of burst as well as the

timestamp they have to be sent. The data are fragmented into 504-byte blocks with 8 bytes

appended to achieve the common 512-byte USB packet size. The appended 8 bytes consist

of the in-band signaling flags, the payload length and the timestamp (see Figure 32). If the

payload length is smaller than 504 bytes, also shorter data packets may be sent provided

that the payload length is also adjusted.

Figure 33 shows some bursts written to USRP while no mobile is attached. The period of

approx. 231 samples stems from the guard interval of a typical GSM timeslot.

Figure 33: OpenBTS data bursts in Tx path

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0

4
1

9

4
3

8

4
5

7

D
A

C
 v

al
u

e

number of samples

I

Q

http://gnuradio.org/redmine/wiki/gnuradio/OpenBTSClocks

Software-Defined Radio with GNU Radio and USRP/2

 - 64 -

To understand how data rates in OpenBTS are calculated, a short excursion to GSM standard

and OpenBTS source code has to be done. GSM bases on a 13 MHz master clock and

provides a symbol rate of 270.833 kbit/s (clock decimation of 48) calculated as follows:

𝑇𝐷𝑀𝐴 𝑚𝑢𝑙𝑡𝑖𝑓𝑟𝑎𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑇𝐷𝑀𝐴 𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑚𝑢𝑙𝑡𝑖𝑓𝑟𝑎𝑚𝑒 ∗ 𝑠𝑙𝑜𝑡𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒
= 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑛𝑒 𝑇𝐷𝑀𝐴 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡

120 𝑚𝑠

26 ∗ 8
= 577 𝜇𝑠

𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑇𝐷𝑀𝐴 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑛𝑒 𝑇𝐷𝑀𝐴 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡
= 𝐺𝑆𝑀 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒

156.25 𝑏𝑖𝑡

577 𝜇𝑠
= 270.833 𝑘𝑏𝑖𝑡/𝑠

Since the USRP DACs can only interpolate with integer factors to provide their sample rate of

128 MS/s (see Table 1), it’s impossible to result in 13 MHz or any integer divider of it. This is

why OpenBTS uses a resampler algorithm with factors 65 and 96 (defined in

radioInterface.h) to result in an appropriate USRP sample rate of 400 kS/s, which can be

achieved by a USRP decimation factor of 320.

270.833 𝑘𝑆/𝑠

65
96

= 400 𝑘𝑆/𝑠 ∗ 320 = 128 𝑀𝑆/𝑠

The resampling is done in radioInterface.cpp, calculation of interpolation factor 320 is

done in USRPDevice.cpp, defined as decimRate*2. The desired USRP sample rate of 400kS/s

is assigned in runTransceiver.cpp.

Software-Defined Radio with GNU Radio and USRP/2

 - 65 -

Having understood this context, the OpenBTS data rate with a burst periodicity of approx.

231 samples (see Figure 33) can be calculated as follows:

231 ∗ 65
96 = 577 𝜇𝑠 → 1 𝐺𝑆𝑀 𝑇𝐷𝑀𝐴 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡

128𝑒6 𝑆/𝑠

320 ∗ 65
96

= 270.833
𝑘𝐵𝑖𝑡

𝑠
→ 𝐺𝑆𝑀 𝑠𝑦𝑚𝑏𝑜𝑙 𝑟𝑎𝑡𝑒

This resampling issue can be solved, if the USRP is reclocked to 52 MHz, since this is an

integer multiple of 13 MHz GSM master clock, see Transceiver52M in chapter 4.4. While

doing this, some changes in the USRP firmware as well as in OpenBTS.config have to be

done.

Further information provided under:

http://www.gnuradio.org/redmine/wiki/gnuradio/OpenBTSClockModifications

The data bursts as shown in Figure 33 are generated by writing the USRP I/Q samples into a

csv-file (done by the modified USRPDevice.cpp below) and visualized through a spreadsheet

program.

After having changed the file USRPDevice.cpp it’s necessary to rerun make in the

Transceiver directory.

$OPENBTSROOT/Transceiver/USRPDevice.cpp

int USRPDevice::writeSamples(short *buf, int len, bool *underrun,

 unsigned long long timestamp,

 bool isControl)

{

#ifndef SWLOOPBACK

 if (!m_uTx) return 0;

 ...

 unsigned isEnd = (numPkts < 2);

 uint32_t *outPkt = new uint32_t[128*numPkts];

 int pktNum = 0;

// USRP-HACK

FILE * pFile;

pFile = fopen ("outfile.csv","a");

// /USRP-HACK

Software-Defined Radio with GNU Radio and USRP/2

 - 66 -

 while (numWritten < len) {

 // pkt is pointer to start of a USB packet

...

 timestamp += payloadLen/2/sizeof(short);

 isStart = 0;

 pktNum++;

// USRP-HACK

for (int i=2;i<=(payloadLen/4)+2;i++) {

 fprintf (pFile, "%i,%i\n",(int16_t)(pkt[i] & 0xffff),(int16_t)(pkt[i] >> 16));

}

// /USRP-HACK

 pkt[0] = host_to_usrp_u32(pkt[0]);

 pkt[1] = host_to_usrp_u32(pkt[1]);

 }

 m_uTx->write((const void*) outPkt,sizeof(uint32_t)*128*numPkts,NULL);

 delete[] outPkt;

// USRP-HACK

fclose(pFile);

// /USRP-HACK

 samplesWritten += len/2/sizeof(short);

 return len/2/sizeof(short);

#else

...

FILE * pFile;

pFile = fopen(“anyfile.csv”,”a”);

for (int i=2; i<=(payloadLen/4)+2;i++) {

 fprintf(pFile,”%i,%i\n”, (int16_t)(pkt[i] & 0xffff),(int16_t)(pkt[i] >>

16));

}

fclose(pFile);

Software-Defined Radio with GNU Radio and USRP/2

 - 67 -

5. Conclusion

The given text deals with the wide application- and research-oriented field of Software-

Defined Radio (SDR). With the open source project GNU Radio and the hardware platform

USRP/2, very complex wireless transmission systems can be explored, even with a relatively

small budget. Principally all of the needed modules and information can be found in the

internet. It is the credit of this text to bring these widespread information together.

This work integrates many aspects of SDR projects based on GNU Radio and USRP/2. Starting

with installation guides and scripts for Linux, GNU Radio and GRC, first receiver

implementations like FM and FM RDS are run successfully. Specific aspects, like

synchronization issues at the RF frontend and the sound card, details of the data transfer at

the USB and Gigabit Ethernet interface and first portation issues of the OpenBTS project to

USRP2 are addressed. Highlight of this thesis is the successful operation of a complete

OpenBTS GSM system. For a better understanding, all achieved goals and aspects are

presented in Figure 34.

Figure 34: Results of the thesis

Software-Defined Radio with GNU Radio and USRP/2

 - 68 -

Every finished project puts new issues to work on in the future. They are illustrated in

Figure 35.

Figure 35: Lookout of the thesis

The author is grateful for all code and documentation found in the internet and created by

many anonymous contributors. He is particularly indebted to George Nychis, David Burgess

and Jonathan Corgan for very valuable mail contributions.

Software-Defined Radio with GNU Radio and USRP/2

 - 69 -

List of literature

1. Sklar, Bernard. Digital Communications:Fundamentals and Applications. s.l. : Prentice Hall,

2001.

2. Blossom, Eric. Exploring GNU Radio. [Online] [Cited: 12 10, 2009.]

http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html.

3. Ettus, Matt (et al.). USRP2GenFAQ. [Online] [Cited: 01 20, 2010.]

http://www.gnuradio.org/redmine/wiki/gnuradio/USRP2GenFAQ.

4. Abbas, Firas (et al.). GNU Radio - UsrpFAQDBoards. [Online] [Cited: 01 11, 2010.]

http://www.gnuradio.org/redmine/wiki/gnuradio/UsrpFAQDBoards.

5. Ettus, Matt (et al.). USRP2UserFAQ. [Online] [Cited: 01 20, 2010.]

http://www.gnuradio.org/redmine/wiki/gnuradio/USRP2UserFAQ.

6. —. UsrpFAQGen. [Online] [Cited: 01 20, 2010.]

http://www.gnuradio.org/redmine/wiki/gnuradio/UsrpFAQGen.

7. Biphase mark code. [Online] [Cited: 01 10, 2010.]

http://en.wikipedia.org/wiki/Biphase_mark_code.

8. Engdahl, Tomi. S/PDIF Interface. [Online] [Cited: 01 20, 2010.]

http://www.epanorama.net/documents/audio/spdif.html.

9. RME (german). Word clock module. [Online] [Cited: 01 10, 2010.] http://www.rme-

audio.de/download/9632wcm_d.pdf.

10. Symeonidis, Dimitrios. RDS. [Online] [Cited: 01 11, 2010.]

https://www.cgran.org/attachment/wiki/RDS/rds_rx.png.

11. Blossom, Eric. Basic TX first Nyquist zone frequencies. [Online] [Cited: 01 10, 2010.]

http://www.mail-archive.com/discuss-gnuradio@gnu.org/msg18077.html.

12. Kestrel Signal Processing, Inc. The OpenBTS Project. [Online] [Cited: 01 10, 2010.]

http://www.openbts.sourceforge.net.

13. GSM Security. What are Ki, Kc, RAND and SRES. [Online] [Cited: 01 10, 2010.]

http://www.gsm-security.net/faq/gsm-ki-kc-rand-sres.shtml.

14. Burgess, David. OpenBTSSettingUpAsterisk. [Online] [Cited: 01 10, 2010.]

http://gnuradio.org/redmine/wiki/gnuradio/OpenBTSSettingUpAsterisk.

Software-Defined Radio with GNU Radio and USRP/2

 - 70 -

15. Nychis, George. Enabling MAC Protocol Implementations on Software-Defined Radios.

[Online] http://www.andrew.cmu.edu/user/gnychis/nychis_nsdi09.pdf.

16. EBU and RDS Forum. RDS Standards. [Online] [Cited: 01 10, 2010.]

http://www.rds.org.uk/rds98/rds_standards.htm.

17. 3GPP. [Online] [Cited: 01 10, 2010.]

http://www.3gpp.org/ftp/Specs/archive/45_series/45.005/45005-910.zip.

18. Configuring IP Phones for use with Asterisk. [Online] [Cited: 01 10, 2010.]

http://www.asteriskguru.com/tutorials/asterisk_voip_ipphone.html.

List of figures

Figure 1: Block diagram of a typical digital communication system [1] 2

Figure 2: Software-Defined Radio block diagram .. 8

Figure 3: USRP .. 10

Figure 4: USRP2 .. 10

Figure 5: USRP/2 SDR Block .. 10

Figure 6: Digital Down Converter Block Diagram (according to [2]) .. 11

Figure 7: RXF900 ... 12

Figure 8: TVRX .. 12

Figure 9: GRC FM receiver example usrp_wbfm_receive.grc adapted for USRP2 15

Figure 10: USRP2 block properties ... 17

Figure 11: GRC block “WBFM Receive” with opened properties window 19

Figure 12: Signal path from FM VHF to audio sink ... 25

Figure 13: Biphase mark code .. 28

Figure 14: Biphase mark code with all data bits set to zero .. 28

Figure 15: Block diagram for possible clock synchronization .. 29

Figure 16: Flow graph of RDS Receiver block gr-rds [10] ... 30

Figure 17: SDR block for FM signal processing ... 35

Figure 18: Illustration of csv data after byte swapping.. 36

Figure 19: CSV visualization of traced samples .. 37

file:///C:/Users/faehnle/Documents/bachelor%20thesis/Bachelor%20Thesis_20100306.docx%23_Toc255657636

Software-Defined Radio with GNU Radio and USRP/2

 - 71 -

Figure 20: Principle of I & Q values for a sine function between 90° and 270° 39

Figure 21: Calculated sine and cosine functions .. 40

Figure 22: Byte order of sine_out_2.bin (little-endian) ... 42

Figure 23: Platform independent byte order of sine_out_2.bin (little-endian) 44

Figure 24: summarized GSM block diagram .. 46

Figure 25: Functional principle of SDR with OpenBTS ... 48

Figure 26: Block diagram of OpenBTS laboratory setup .. 49

Figure 27: RF screened case ... 50

Figure 28: Opened case with UE and antenna inside .. 50

Figure 29: S-parameters of a 2 port device (DUT = device under test) 51

Figure 30: S-parameter measurement setup ... 52

Figure 31: Decoupling of the circulator from port 1 to port 3 (S31) ... 52

Figure 32: Data structure of an in-band signaling block from

 $GNURADIOROOT/usrp/doc/inband-signaling-usb .. 61

Figure 33: OpenBTS data bursts in Tx path .. 63

Figure 34: Results of the thesis .. 67

Figure 35: Lookout of the thesis ... 68

Software-Defined Radio with GNU Radio and USRP/2

 - A -

6. Annex

6.1. Annex A: Installation guide for Fedora 9 with GNU Radio 3.2.2 and USRP2

Requirements: Fedora 9 DVD-Image

http://download.fedoraproject.org/pub/fedora/linux/releases/9/Fedora/i386/iso/Fedora-9-

i386-DVD.iso

Below, a short installation how-to for Fedora 9, GNU Radio 3.2.2 and USRP2 is given. Fedora

9 was chosen as Linux distribution for our GNU Radio/USRP2 environment, so the following

installation steps are based thereon.

First you have boot from Fedora 9 DVD and choose “Install or upgrade existing system“. The

following question for testing your media may be skipped…

Software-Defined Radio with GNU Radio and USRP/2

 - B -

After selecting system language and keyboard layout you are asked for confirmation to

overwrite all data, if you’re going to install Fedora on a clean hard drive.

Afterwards the time zone and root password has to be set. In the following dialog we leave

the partitioning of the hard drive to the fedora installer and confirm the choice with “Write

changes to disk”. You may choose an advanced partitioning of your hard drive if you know

what you’re doing.

Software-Defined Radio with GNU Radio and USRP/2

 - C -

Having written the partition table, you’re asked for additional software to be installed. We

uncheck “Office and Productivity” since we’re going to install all we need later on.

Now you have to wait until Fedora has been installed and finally reboot your pc…

Software-Defined Radio with GNU Radio and USRP/2

 - D -

After rebooting, some last steps have to be done. You have to agree to the license

information, create a standard user profile for non root privileged work, set your local date

and time and finally decide if you want to send your hardware information to fedora project.

Passed another reboot, your system starts the first time with your login screen - so log in

with your created user.

Software-Defined Radio with GNU Radio and USRP/2

 - E -

Now you have a real clean Fedora 9 installation. In the next step we go on with the file

install_gnuradio_fd9.tar extracted on desktop.

 This archive includes all dependencies necessary to configure and make GNU Radio 3.2.2

with USRP2 (grc, python) support on THAT Fedora installation. Don’t use the provided install

script install.sh for another Linux distribution without checking dependencies!

Software-Defined Radio with GNU Radio and USRP/2

 - F -

Since the provided install.sh script needs root privileges for installing and making packets,

you need to run in out of an xterm as root. Open the Terminal as shown below.

In the terminal you have to gain root privileges by typing “su” followed by your created root

password during Fedora installation. Having gathered root privileges, the install.sh needs to

be run by typing “./Desktop/install/install.sh” if you have extracted the tar archive to your

users desktop.

Software-Defined Radio with GNU Radio and USRP/2

 - G -

Having understood and agreed to the shown banner, you can start the installation by

pressing a key. If the installation has finished, you should restart your system because of

some environment variables were set during the installation, which are not correctly set

until a new logon.

Software-Defined Radio with GNU Radio and USRP/2

 - H -

6.2. Annex B: Automated installation script for GNU Radio 3.2.2, USRP2, ALSA and RDS on

Fedora 9

Starting by a so called “shebang” or “sha-bang” at the head of a script, you can tell your

system a set of commands, which will be fed to the command interpreter indicated. Here

this is just a shell-script need to run in /bin/sh.

#!/bin/sh

After this, some information about the script and author are provided that you just see, if

your editing the file. There’s also a note that this script is provided under GPL License.

Copyright 2009 Matthias Faehnle, University of Applied Sciences, Ulm, Germany [ff]

At first the screen is cleared now and a welcome message is printed out in the shell that

contains information about the requirements and what is done by running the script.

clear

echo "

--

--- Welcome to GNU Radio 3.2.2 install script by Matthias Faehnle. ---

--- All dependencies on Fedora 9 [Kernel 2.6.25-14.fc9.i686] for --- [ff]

Also there is information, that you can abort this script by pressing Ctrl+C (like you can do it

with every script that doesn’t contain a signal handler) or go on by pressing any other key,

what is done by the read-command.

--- Press a key to continue if you aggree or press Ctrl+C to escape ---

--"

read -n 1

Now we change the current directory to the relative path, where the script is run from. After

this operation we can set the variable SCRIPTDIR to the absolute path from / and access later

to it from wherever the script is run from and in which directory we currently are.

cd $(dirname $0)

SCRIPTDIR=$(pwd)

Because we need root privileges to for installation of packets, the current user name is read

out and checked if it’s equal to “root”. If not, the script aborts with the shown error.

Software-Defined Radio with GNU Radio and USRP/2

 - I -

WHO=$(whoami)

if ["$WHO" != "root"]; then

 echo "You are logged in as $WHO, please log in as root - script stopped"

 exit

fi

It is also checked if the expected Fedora 9 Kernel is used to prevent dependency problems. If

the estimated Kernel isn’t found, the following notice will be print to screen.

if [! -f /boot/vmlinuz-2.6.25-14.fc.i686]; then

 echo "Your distribution doesn’t seem to be Fedora 9 [Kernel 2.6.25-14.fc9.i686] –

continue by pressing a key or press Ctrl+C to escape!"

fi

Now the installation starts by calling the Fedora packet manager yum with the required

packets. Parameter “y” causes yum not to ask for each packet to be installed. These

packages need to be installed to meet requirements for GNU Radio 3.3.2, Alsa sound, and

the gr-rds block that later will be installed.

reguirements gnuradio-3.2.2 [gnuradio.org] + alsa + gr-rds [www.cgran.org]

yum -y install gcc gcc-c++ fftw-devel cppunit-devel wxPython-devel alsa-lib-devel python-devel

swig pygsl gsl-devel SDL-devel python-cheetah python-lxml pygtk2-devel PyOpenGL libxml2-devel

Since we need some newer packages than they are provided by Fedora 9, some packets are

built in the install.tar und now installed to the system.

install boost > 1.35 from rpms

rpm -i $SCRIPTDIR/libicu-4.0.1-2.fc11.i386.rpm

rpm -i $SCRIPTDIR/boost-1.37.0-3.fc11.i386.rpm

rpm -i $SCRIPTDIR/boost-devel-1.37.0-3.fc11.i386.rpm

Now we can start with the execution and installation of GNU Radio. It is installed by this

script in /gnuradio-3.2.2. After unpacking with tar, the directory is changed to /gnuradio-

3.2.2 and a “configure” is performed. The given parameters tell GNU Radio to enable the

correspondent functions und to make the necessary libraries. After the configuration a

“make” and “make install” need to be executed to start the makefiles doing their

compilation work.

Software-Defined Radio with GNU Radio and USRP/2

 - J -

unpack gnuradio to /gnuradio-3.2.2 and install

cd /

GNUSRC=$SCRIPTDIR/gnuradio-3.2.2.tar.gz

tar -xf $GNUSRC

GNUDIR=/gnuradio-3.2.2

cd $GNUDIR

./configure --enable-gnuradio-core --enable-usrp2 --enable-gr-audio-alsa --enable-grc --

enable-gr-wxgui

make

make install

Having installed GNU Radio, we start preparing the dependencies for the RDS block provided

from http://www.cgran.org. Because this block was made with a newer libtool version, we

have to compile libtool-2.X in a folder – here unpacked to the SCRIPTDIR.

prepare libtool > 1.5 for RDS

cd $SCRIPTDIR

tar -xf libtool-2.2.6a.tar.gz

cd libtool-2.2.6

./configure

make

make install

After the libtool is renewed to an appropriate version, the gr-rds block is extracted to the

$GNURADIOROOT/gr-rds.

unpack and install gr-rds block

cd $GNUDIR

RDSSRC=$SCRIPTDIR/gr-rds.tar

tar -xf $RDSSRC

RDSDIR=$GNUDIR/gr-rds

cd $RDSDIR

Because the gr-rds installer searches for libxml2-devel library header files in

/usr/include/libxml/, we have to check if the later on needed file “parser.h” exists in there.

Since by default in Fedora 9 the file is found in in /usr/include/libxml2/libxml, a symbolic link

is created if the file doesn’t exist in the expected location.

if [! -f /usr/include/libxml/parser.h]; then

 ln -s /usr/include/libxml2/libxml /usr/include/libxml

fi

Software-Defined Radio with GNU Radio and USRP/2

 - K -

Also the symbolic link ltmain.sh is tested and replaced because a different path is used in the

default configuration.

if [! -f ltmain.sh]; then

 yes|rm ltmain.sh && ln -s /usr/local/share/libtool/config/ltmain.sh

fi

Having checked all dependencies for gr-rds, the block is installed as known.

./configure

make

make install

For several reasons (e.q. GRC), we need to set the $PYTHONPATH environment variable in

the shell to the python package path. This is done automatically for every user on time you

log in, if the export command is written to /etc/bashrc. The following command prints the

export command just at the very end of bashrc.

write envvar PYTHONPATH to bashrc

echo "export PYTHONPATH=/usr/lib/python2.5/site-packages" >> /etc/bashrc

At last, the script waits for a input key and prints out information that the installation has

finished and you have to restart your session for the env var $PYTHONPATH to be set.

echo "

--

--- End of installscript reached! You'll need to restart your ---

--- session because global var PYTHONPATH has been set in basrc. ---

--- Press key to leave... ---

--"

read -n 1

6.3. Annex C: Install.sh

#!/bin/sh

Copyright 2009 Matthias Faehnle, University of Applied Sciences, Ulm, Germany

Install script for GNU Radio 3.2.2, USRP2 and RDS on Fedora 9 [Kernel 2.6.25-14.fc9.i686]

This script is distributed in the hope that it will be useful,

Software-Defined Radio with GNU Radio and USRP/2

 - L -

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

clear

echo "

--

--- Welcome to GNU Radio 3.2.2 install script by Matthias Faehnle. ---

--- All dependencies on Fedora 9 [Kernel 2.6.25-14.fc9.i686] for ---

--- USRP2, Alsa and RDS are covered within this installation. Also ---

--- grc is installed, so you need to run this script from a xterm! ---

--- Included GNU Radio Version will be installed in /gnuradio-3.2.2 ---

--- ---

--- This script is distributed in the hope that it will be useful, ---

--- but WITHOUT ANY WARRANTY! It doesn't consider possible issues ---

--- with package incompatibility because it's intended to be run ---

--- directly after a Fedora 9 core installation! ---

--- Press a key to continue if you aggree or press Ctrl+C to escape ---

--"

read -n 1

cd $(dirname $0)

SCRIPTDIR=$(pwd)

WHO=$(whoami)

if ["$WHO" != "root"]; then

 echo "You are logged in as $WHO, please log in as root - script stopped"

 exit

fi

if [! -f /boot/vmlinuz-2.6.25-14.fc.i686]; then

 echo "Your distribution doesn’t seem to be Fedora 9 [Kernel 2.6.25-14.fc9.i686] –

continue by pressing a key or press Ctrl+C to escape!"

fi

reguirements gnuradio-3.2.2 [gnuradio.org] + alsa + gr-rds [www.cgran.org]

yum -y install gcc gcc-c++ fftw-devel cppunit-devel wxPython-devel alsa-lib-devel python-devel

swig pygsl gsl-devel SDL-devel python-cheetah python-lxml pygtk2-devel PyOpenGL libxml2-devel

install boost > 1.35 from rpms

rpm -i $SCRIPTDIR/libicu-4.0.1-2.fc11.i386.rpm

rpm -i $SCRIPTDIR/boost-1.37.0-3.fc11.i386.rpm

rpm -i $SCRIPTDIR/boost-devel-1.37.0-3.fc11.i386.rpm

Software-Defined Radio with GNU Radio and USRP/2

 - M -

unpack gnuradio to /gnuradio-3.2.2 and install

cd /

GNUSRC=$SCRIPTDIR/gnuradio-3.2.2.tar.gz

tar -xf $GNUSRC

GNUDIR=/gnuradio-3.2.2

cd $GNUDIR

./configure --enable-gnuradio-core --enable-usrp2 --enable-gr-audio-alsa --enable-grc --

enable-gr-wxgui

make

make install

prepare libtool > 1.5 for RDS

cd $SCRIPTDIR

tar -xf libtool-2.2.6a.tar.gz

cd libtool-2.2.6

./configure

make

make install

unpack and install gr-rds block

cd $GNUDIR

RDSSRC=$SCRIPTDIR/gr-rds.tar

tar -xf $RDSSRC

RDSDIR=$GNUDIR/gr-rds

cd $RDSDIR

if [! -f /usr/include/libxml/parser.h]; then

 ln -s /usr/include/libxml2/libxml /usr/include/libxml

fi

if [! -f ltmain.sh]; then

 yes|rm ltmain.sh && ln -s /usr/local/share/libtool/config/ltmain.sh

fi

./configure

make

make install

write envvar PYTHONPATH to bashrc

echo "export PYTHONPATH=/usr/lib/python2.5/site-packages" >> /etc/bashrc

echo "

--

--- End of installscript reached! You'll need to restart your ---

--- session because global var PYTHONPATH has been set in basrc. ---

--- Press key to leave... ---

--"

read -n 1

Software-Defined Radio with GNU Radio and USRP/2

 - N -

6.4. Annex D: RDS receiver for USRP2

#!/usr/bin/env python

from gnuradio import gr, usrp2, optfir, blks2, rds, audio

from gnuradio.eng_option import eng_option

from gnuradio.wxgui import slider, form, stdgui2, fftsink2, scopesink2, constsink_gl

from optparse import OptionParser

from rdspanel import rdsPanel

#from usrpm import usrp_dbid

import sys, math, wx, time

class rds_rx_graph (stdgui2.std_top_block):

 def __init__(self,frame,panel,vbox,argv):

 stdgui2.std_top_block.__init__ (self,frame,panel,vbox,argv)

 parser=OptionParser(option_class=eng_option)

 parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None,

 help="select USRP Rx side A or B (default=A)")

 parser.add_option("-f", "--freq", type="eng_float", default=101.8e6,

 help="set frequency to FREQ", metavar="FREQ")

 parser.add_option("-g", "--gain", type="eng_float", default=None,

 help="set gain in dB")

 parser.add_option("-s", "--squelch", type="eng_float", default=0,

 help="set squelch level (default is 0)")

 parser.add_option("-V", "--volume", type="eng_float", default=None,

 help="set volume (default is midpoint)")

 parser.add_option("-O", "--audio-output", type="string", default="plughw:0,0",

 help="pcm device name (default is plughw:0,0)")

 (options, args) = parser.parse_args()

 if len(args) != 0:

 parser.print_help()

 sys.exit(1)

 self.frame = frame

 self.panel = panel

 # connect to USRP

usrp_decim = 250

 usrp_decim = 416

self.u = usrp.source_c(0, usrp_decim)

 self.u = usrp2.source_32fc("eth1")

print "USRP Serial: ", self.u.serial_number()

 print "USRP MAC: ", self.u.mac_addr()

adc_rate = self.u.adc_rate() # 64 MS/s

 adc_rate = self.u.adc_rate() # 100 MS/s

usrp_rate = adc_rate / usrp_decim # 256 kS/s

 usrp_rate = adc_rate / usrp_decim # ~240 kS/s

audio_decim = 8

 audio_decim = 5

audio_rate = usrp_rate / audio_decim # 32 kS/s

 audio_rate = usrp_rate / audio_decim # ~48k kS/s

 self.u.set_decim(usrp_decim)

if options.rx_subdev_spec is None:

options.rx_subdev_spec = usrp.pick_subdev(self.u,

(usrp_dbid.TV_RX, usrp_dbid.TV_RX_REV_2, usrp_dbid.BASIC_RX))

self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))

Software-Defined Radio with GNU Radio and USRP/2

 - O -

self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)

print "Using d'board", self.subdev.side_and_name()

 # gain, volume, frequency

 self.gain = options.gain

if options.gain is None:

g = self.subdev.gain_range()

self.gain = g[1]

 self.gain = -30

 self.vol = options.volume

 if self.vol is None:

 g = self.volume_range()

 self.vol = float(g[0]+g[1])/2

 self.freq = options.freq

 if abs(self.freq) < 1e6:

 self.freq *= 1e6

 # channel filter, wfm_rcv_pll

 chan_filt_coeffs = optfir.low_pass (1,

 usrp_rate,

 80e3,

 115e3,

 0.1,

 60)

 self.chan_filt = gr.fir_filter_ccf (1, chan_filt_coeffs)

 self.guts = blks2.wfm_rcv_pll (usrp_rate, audio_decim)

 self.connect(self.u, self.chan_filt, self.guts)

 # volume control, audio sink

 self.volume_control_l = gr.multiply_const_ff(self.vol)

 self.volume_control_r = gr.multiply_const_ff(self.vol)

 self.audio_sink = audio.sink(int(audio_rate), options.audio_output, False)

 self.connect ((self.guts, 0), self.volume_control_l, (self.audio_sink, 0))

 self.connect ((self.guts, 1), self.volume_control_r, (self.audio_sink, 1))

 # pilot channel filter (band-pass, 18.5-19.5kHz)

 pilot_filter_coeffs = gr.firdes.band_pass(1,

 usrp_rate,

 18.5e3,

 19.5e3,

 1e3,

 gr.firdes.WIN_HAMMING)

 self.pilot_filter = gr.fir_filter_fff(1, pilot_filter_coeffs)

 self.connect(self.guts.fm_demod, self.pilot_filter)

 # RDS channel filter (band-pass, 54-60kHz)

 rds_filter_coeffs = gr.firdes.band_pass (1,

 usrp_rate,

 54e3,

 60e3,

 3e3,

 gr.firdes.WIN_HAMMING)

 self.rds_filter = gr.fir_filter_fff (1, rds_filter_coeffs)

 self.connect(self.guts.fm_demod, self.rds_filter)

 # create 57kHz subcarrier from 19kHz pilot, downconvert RDS channel

 self.mixer = gr.multiply_ff()

 self.connect(self.pilot_filter, (self.mixer, 0))

 self.connect(self.pilot_filter, (self.mixer, 1))

 self.connect(self.pilot_filter, (self.mixer, 2))

 self.connect(self.rds_filter, (self.mixer, 3))

 # low-pass the baseband RDS signal at 1.5kHz

 rds_bb_filter_coeffs = gr.firdes.low_pass (1,

 usrp_rate,

 1500,

 2e3,

 gr.firdes.WIN_HAMMING)

 self.rds_bb_filter = gr.fir_filter_fff (1, rds_bb_filter_coeffs)

Software-Defined Radio with GNU Radio and USRP/2

 - P -

 self.connect(self.mixer, self.rds_bb_filter)

 # 1187.5bps = 19kHz/16

 self.rds_clock = rds.freq_divider(16)

 #self.rds_clock = gr.fractional_interpolator_ff(0, 1/16.)

 clock_taps = gr.firdes.low_pass (1, # gain

 usrp_rate, # sampling rate

 1.2e3, # passband cutoff

 1.5e3, # transition width

 gr.firdes.WIN_HANN)

 self.clock_filter = gr.fir_filter_fff (1, clock_taps)

 self.connect(self.pilot_filter, self.rds_clock, self.clock_filter)

 # bpsk_demod, diff_decoder, rds_decoder

 self.bpsk_demod = rds.bpsk_demod(usrp_rate)

 self.differential_decoder = gr.diff_decoder_bb(2)

 self.msgq = gr.msg_queue()

 self.rds_decoder = rds.data_decoder(self.msgq)

 self.connect(self.rds_bb_filter, (self.bpsk_demod, 0))

 self.connect(self.clock_filter, (self.bpsk_demod, 1))

 self.connect(self.bpsk_demod, self.differential_decoder)

 self.connect(self.differential_decoder, self.rds_decoder)

this is used for tuning to stations automatically

self.probe = gr.probe_avg_mag_sqrd_f(5, 0.1)

self.connect (self.pilot_filter, self.probe)

 self._build_gui(vbox, usrp_rate, audio_rate)

 # set initial values

 self.set_gain(self.gain)

 self.set_vol(self.vol)

 if not(self.set_freq(self.freq)):

 self._set_status_msg("Failed to set initial frequency")

####################### GUI ################################

 def _set_status_msg(self, msg, which=0):

 self.frame.GetStatusBar().SetStatusText(msg, which)

 def _build_gui(self, vbox, usrp_rate, audio_rate):

 def _form_set_freq(kv):

 return self.set_freq(kv['freq'])

 if 0:

 self.src_fft = fftsink2.fft_sink_c (self.panel, title="Data from USRP",

 fft_size=512, sample_rate=usrp_rate)

 self.connect (self.u, self.src_fft)

 vbox.Add (self.src_fft.win, 4, wx.EXPAND)

 if 0:

 post_fm_demod_fft = fftsink2.fft_sink_f (self.panel, title="Post FM

Demod",

 fft_size=512, sample_rate=usrp_rate, y_per_div=10, ref_level=0)

 self.connect (self.guts.fm_demod, post_fm_demod_fft)

 vbox.Add (post_fm_demod_fft.win, 4, wx.EXPAND)

 if 0:

 rds_fft = fftsink2.fft_sink_f (self.panel, title="RDS baseband",

 fft_size=512, sample_rate=usrp_rate, y_per_div=20, ref_level=20)

 self.connect (self.rds_clock, rds_fft)

 vbox.Add (rds_fft.win, 4, wx.EXPAND)

 if 0:

 rds_scope = scopesink2.scope_sink_f(self.panel, title="RDS timedomain",

 sample_rate=usrp_rate,num_inputs=2)

 self.connect (self.rds_bb_filter, (rds_scope,1))

 self.connect (self.rds_clock, (rds_scope,0))

 vbox.Add(rds_scope.win, 4, wx.EXPAND)

Software-Defined Radio with GNU Radio and USRP/2

 - Q -

if 1:

const_sink = constsink_gl.const_sink_c(

self.panel,

title="Constellation Plot",

sample_rate=usrp_rate,

frame_rate=5,

const_size=2048,

M=4,

theta=0,

alpha=0.005,

fmax=0.06,

mu=0.5,

gain_mu=0.005,

symbol_rate=usrp_rate/4.,

omega_limit=0.005,

)

self.connect (self.rds_bb_filter, gr.float_to_complex(), const_sink)

vbox.Add(const_sink.win, 4, wx.EXPAND)

 self.rdspanel = rdsPanel(self.msgq, self.panel)

 vbox.Add(self.rdspanel, 4, wx.EXPAND)

 # control area form at bottom

 self.myform = form.form()

 # 1st line

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 self.myform.btn_down = wx.Button(self.panel, -1, "<<")

 self.myform.btn_down.Bind(wx.EVT_BUTTON, self.Seek_Down)

 hbox.Add(self.myform.btn_down, 0)

 self.myform['freq'] = form.float_field(

 parent=self.panel, sizer=hbox, label="Freq", weight=1,

 callback=self.myform.check_input_and_call(_form_set_freq,

self._set_status_msg))

 hbox.Add((5,0), 0)

 self.myform.btn_up = wx.Button(self.panel, -1, ">>")

 self.myform.btn_up.Bind(wx.EVT_BUTTON, self.Seek_Up)

 hbox.Add(self.myform.btn_up, 0)

 self.myform['freq_slider'] = form.quantized_slider_field(

 parent=self.panel, sizer=hbox, weight=3,

 range=(87.5e6, 108e6, 0.1e6), callback=self.set_freq)

 hbox.Add((5,0), 0)

 vbox.Add(hbox, 0, wx.EXPAND)

 # 2nd line

 hbox = wx.BoxSizer(wx.HORIZONTAL)

 hbox.Add((5,0), 0)

 self.myform['volume'] = form.quantized_slider_field(parent=self.panel,

sizer=hbox,

 label="Volume", weight=3, range=self.volume_range(),

callback=self.set_vol)

hbox.Add((5,0), 1)

self.myform['gain'] = form.quantized_slider_field(parent=self.panel,

sizer=hbox,

label="Gain", weight=3, range=self.subdev.gain_range(),

callback=self.set_gain)

hbox.Add((5,0), 0)

 vbox.Add(hbox, 0, wx.EXPAND)

########################### EVENTS ############################

 def set_vol (self, vol):

 g = self.volume_range()

 self.vol = max(g[0], min(g[1], vol))

 self.volume_control_l.set_k(10**(self.vol/10))

 self.volume_control_r.set_k(10**(self.vol/10))

 self.myform['volume'].set_value(self.vol)

 self.update_status_bar ()

Software-Defined Radio with GNU Radio and USRP/2

 - R -

 def set_freq(self, target_freq):

r = usrp.tune(self.u, 0, self.subdev, target_freq)

 r = self.u.set_center_freq(target_freq)

 if r:

 self.freq = target_freq

 self.myform['freq'].set_value(target_freq)

 self.myform['freq_slider'].set_value(target_freq)

 self.rdspanel.frequency.SetLabel('%3.2f' % (target_freq/1e6))

 self.update_status_bar()

 self.bpsk_demod.reset()

 self.rds_decoder.reset()

 self.rdspanel.clear_data()

 self._set_status_msg("OK", 0)

 return True

 else:

 self._set_status_msg("Failed", 0)

 return False

 def set_gain(self, gain):

self.myform['gain'].set_value(gain)

self.subdev.set_gain(gain)

 self.u.set_gain(gain)

 def update_status_bar (self):

 msg = "Volume:%r, Gain:%r, Freq:%3.1f MHz" % (self.vol, self.gain,

self.freq/1e6)

 self._set_status_msg(msg, 1)

 def volume_range(self):

 return (-20.0, 0.0, 0.5) # hardcoded values

 def Seek_Up(self, event):

 new_freq = self.freq + 1e5

 if new_freq > 108e6:

 new_freq=88e6

 self.set_freq(new_freq)

print self.probe.level()

 def Seek_Down(self, event):

 new_freq = self.freq - 1e5

 if new_freq < 88e6:

 new_freq=108e6

 self.set_freq(new_freq)

print self.probe.level()

if __name__ == '__main__':

 app = stdgui2.stdapp (rds_rx_graph, "USRP RDS RX")

 app.MainLoop ()

Software-Defined Radio with GNU Radio and USRP/2

 - S -

6.5. Annex E: 3-port s-parameter measurement of laboratory setup

Software-Defined Radio with GNU Radio and USRP/2

 - T -

6.6. Annex F: Sending samples source code with byte orders and csv generation

#include <iostream>
#include <math.h>

using namespace std;

int main(int argc, char *argv[])

{

 short sample[400];

 uint32_t full_sample[200];

 // calculate sine wave with amplitude of 2^12 in 200 steps

 for (int i = 0; i < 200; i++) {

 // first 2 bytes (size of short is 2 byte) are cos-function (I)

 // and second sin-function (Q). (i<<1) multiplies increment variable i by two

 sample[i<<1] = 4096*cos(2*M_PI*(i % 200)/200);

 sample[(i<<1) + 1] = 4096*sin(2*M_PI*(i % 200)/200);

 }

 // open and if not exists create file sine_out.csv for writing

 FILE * pFile;

 pFile = fopen("sine_out.csv","w+");

 // step through sample array to perform byte operations

 for(int i =0; i<200; i++) {

 // write current I and Q sample[i] in decimal and hex notation to stdout

 cout<<dec<<"\tI(dec): "<<sample[i<<1]<<"\tQ(dec): "<<sample[(i<<1) + 1];

 cout<<hex<<"\tI(hex): "<<sample[i<<1]<<"\tQ(hex): "<<sample[(i<<1) + 1];

 // write current decimal I and Q sample[i] divided by a comma to csv file

 fprintf(pFile,"%i,%i\n",sample[i<<1], sample[(i<<1) + 1]);

 // build 32 bit array full_sample in little endian format (16 bit I + 16 bit Q)

 // this is how data are sent to USRP2 in tx_16sc function (GNU Radio)

 full_sample[i] = ((sample[i<<1] >> 8) & 0xff | (sample[i<<1] << 8))<< 16 |

 ((sample[(i<<1) + 1] >> 8) & 0xff|(sample[(i<<1) + 1] << 8) & 0xff00);

 // write current full_sample[i] in hex notation to stdout

 cout<<hex<<"\tfull_sample(hex): "<<full_sample[i<<1]<<endl;

 }

 // close file pointer

 fclose(pFile);

 // if necessary, insert a system("pause") for windows or the like here

 return 0;

}

